Postnikov extensions of ring spectra

!P2R! P1R! P0R! in the homotopy category of ring spectra. The levels come equipped with compatible maps R! PnR, and the n‐th level is characterized by having i.PnR/D 0 for i > n, together with the fact that i.R/! i.PnR/ is an isomorphism for i n. In this paper we produce k ‐invariants for the levels of this tower and explain their role in the following problem: if one only knows Pn 1R together with n.R/ as a 0.R/‐bimodule, what are the possibilities for PnR? Corollary 1.4 shows in what sense the possibilities are classified by k ‐invariants.

[1]  Daniel Dugger Classification spaces of maps in model categories , 2006, math/0604537.

[2]  Daniel Dugger,et al.  Topological equivalences for differential graded algebras , 2006, math/0604259.

[3]  A. Kuku,et al.  Higher Algebraic K-Theory , 2006 .

[4]  W. Dwyer,et al.  The realization space of a Π-algebra: a moduli problem in algebraic topology , 2004 .

[5]  M. Hopkins,et al.  Structured Ring Spectra: Moduli spaces of commutative ring spectra , 2004 .

[6]  Michael A. Mandell,et al.  Homology and cohomology of E∞ ring spectra , 2004, math/0407209.

[7]  Philip S. Hirschhorn Model categories and their localizations , 2003 .

[8]  B. Shipley HZ -algebra spectra are differential graded algebras , 2002, math/0209215.

[9]  Michael A. Mandell,et al.  A telescope comparison lemma for THH , 2000, math/0012030.

[10]  A. Lazarev Homotopy Theory of A∞ Ring Spectra and Applications to MU-Modules , 2001 .

[11]  Daniel Dugger Combinatorial Model Categories Have Presentations , 2000, math/0007068.

[12]  N. Strickland,et al.  MODEL CATEGORIES (Mathematical Surveys and Monographs 63) , 2000 .

[13]  Mark Hovey Spectra and symmetric spectra in general model categories , 2000, math/0004051.

[14]  M. Basterra André–Quillen cohomology of commutative S-algebras , 1999 .

[15]  H. Baues Combinatorial Foundation of Homology and Homotopy , 1999 .

[16]  B. Shipley,et al.  Algebras and Modules in Monoidal Model Categories , 1998, math/9801082.

[17]  Mark Hovey,et al.  Symmetric spectra , 1998, math/9801077.

[18]  W. Dwyer,et al.  A classification theorem for diagrams of simplicial sets , 1984 .

[19]  W. Dwyer,et al.  Calculating simplicial localizations , 1980 .

[20]  W. Dwyer,et al.  Function complexes in homotopical algebra , 1980 .

[21]  D. Quillen,et al.  Higher algebraic K-theory: I , 1973 .