Genetic algorithms using multi-objectives in a multi-agent system

Abstract We are interested in a job-shop scheduling problem corresponding to an industrial problem. Gantt diagram’s optimization can be considered as an NP-difficult problem. Determining an optimal solution is almost impossible, but trying to improve the current solution is a way of leading to a better allocation. The goal is to reduce the delay in an existing solution and to obtain better scheduling at the end of the planning. We propose an original solution based on genetic algorithms which allows to determine a set of good heuristics for a given benchmark. From these results, we propose a dynamic model based on the contract-net protocol. This model describes a way to obtain new schedulings with agent negotiations. We implement the agent paradigm on parallel machines. After a description of the problem and the genetic method we used, we present the benchmark calculations that have been performed on an SGI Origin 2000. The interpretation of these is a way to refine heuristics given by our evolution process and a way to constrain our agents based on the contract-net protocol. This dynamic model using agents is a way to simulate the behavior of entities that are going to collaborate to improve the Gantt diagram.

[1]  Elpida Tzafestas Vers une systemique des agents autonomes : des cellules, des motivations et des perturbations , 1995 .

[2]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[3]  Jacques Ferber,et al.  Les Systèmes multi-agents: vers une intelligence collective , 1995 .

[4]  Genetic algorithms in optimisation, simulation and modelling , 1994 .

[5]  Alain Cardon,et al.  Genetic Integration in a Multiagent System for Job-Shop Scheduling , 1998, IBERAMIA.

[6]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[7]  Mohamed Jmaiel,et al.  Conception, Behavioral Semantics and Formal Specification of Multi-Agent Systems , 1998, DAI.

[8]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[9]  E. Hillebrand,et al.  Genetic Algorithms in Optimization, Simulation and Modeling , 1994 .

[10]  W. Ashby,et al.  Design for a brain: The origin of adaptive behaviour (2nd ed. rev.). , 1960 .

[11]  A. Roadmapof A Roadmap of Agent Research and Development , 1995 .

[12]  Stephen F. Smith,et al.  A Probabilistic Framework for Resource-Constrained Multi-Agent Planning , 1987, IJCAI.

[13]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[14]  Stephen C. Hayne,et al.  A distributed system for crisis management , 1991, Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System Sciences.

[15]  D. McFarland,et al.  Intelligent behavior in animals and robots , 1993 .

[16]  Carlo Poloni,et al.  Hybrid GA for Multi Objective Aerodynamic Shape Optimisation , 1995 .

[17]  Sue P. Stafford Caring About Knowledge: The Importance of the Link Between Knowledge and Values , 1997 .

[18]  Paul Jorion Principes des systèmes intelligents , 1989 .

[19]  Heinz Mühlenbein,et al.  Evolution in Time and Space - The Parallel Genetic Algorithm , 1990, FOGA.

[20]  J.-P. Vacher,et al.  Genetic algorithms in a multi-agent system , 1998, Proceedings. IEEE International Joint Symposia on Intelligence and Systems (Cat. No.98EX174).

[21]  Reid G. Smith,et al.  The Contract Net Protocol: High-Level Communication and Control in a Distributed Problem Solver , 1980, IEEE Transactions on Computers.

[22]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[23]  Sandip Sen,et al.  Collective adaptation: the sharing of building blocks , 1998 .

[24]  Vidroha Debroy,et al.  Genetic Programming , 1998, Lecture Notes in Computer Science.

[25]  Edmund H. Durfee,et al.  Negotiating Task Decomposition and Allocation Using Partial Global Planning , 1989, Distributed Artificial Intelligence.

[26]  F. Varela Organism: A Meshwork of Selfless Selves , 1991 .

[27]  Worthy N. Martin,et al.  Foundations of Genetic Algorithms 6 (Foga-6) , 2001 .

[28]  John J. Grefenstette Proceedings of the First International Conference on Genetic Algorithms and their Applications, July 24-26, 1985, at the Carnegie-Mellon University, Pittsburgh, PA , 1988 .

[29]  Francesco Orilia,et al.  Semantics and Cognition , 1991 .

[30]  Chris Langton,et al.  Artificial Life , 2017, Encyclopedia of Machine Learning and Data Mining.

[31]  A. Cardon,et al.  A Model of Crisis Management System including Mental Representations , 1997 .

[32]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1992, Artificial Intelligence.

[33]  P Bourgine,et al.  Towards a Practice of Autonomous Systems , 1992 .

[34]  M.-C. Portmann Méthodes de décomposition spatiale et temporelle en ordonnancement de la production , 1988 .

[35]  Lashon B. Booker,et al.  Proceedings of the fourth international conference on Genetic algorithms , 1991 .

[36]  John Holland,et al.  Adaptation in Natural and Artificial Sys-tems: An Introductory Analysis with Applications to Biology , 1975 .

[37]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[38]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[39]  Pierre Borne,et al.  Production job-shop scheduling using genetic algorithms , 1996, 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929).

[40]  Barbara Hayes-Roth,et al.  A satisficing cycle for real-time reasoning in intelligent agents , 1994 .

[41]  T. L. Saaty,et al.  The computational algorithm for the parametric objective function , 1955 .

[42]  Grégory Seront gseront External Concepts Reuse in Genetic Programming , 2001 .

[43]  T. Michael Knasel,et al.  Robotics and autonomous systems , 1988, Robotics Auton. Syst..

[44]  Jean-Louis Le Moigne La Modelisation des Systemes Complexes , 1990 .

[45]  Christopher G. Langton,et al.  Artificial Life: Proceedings Of An Interdisciplinary Workshop On The Synthesis And Simulation Of Living Systems , 1989 .

[46]  John J. Grefenstette,et al.  Lamarckian Learning in Multi-Agent Environments , 1991, ICGA.

[47]  Alan H. Bond,et al.  Readings in Distributed Artificial Intelligence , 1988 .

[48]  Thomas Bck,et al.  Self-adaptation in genetic algorithms , 1991 .