Superfluid to Mott-insulator transition in Bose-Hubbard models.

We study the superfluid-insulator transition in Bose-Hubbard models in one-, two-, and three-dimensional cubic lattices by means of a recently proposed variational wave function. In one dimension, the variational results agree with the expected Berezinskii-Kosterlitz-Thouless scenario of the interaction-driven Mott transition. In two and three dimensions, we find evidence that, across the transition, most of the spectral weight is concentrated at high energies, suggestive of preformed Mott-Hubbard sidebands. This result is compatible with the experimental data by Stoferle et al. [Phys. Rev. Lett. 92, 130403 (2004)].

[1]  S. Sorella,et al.  Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers , 1998 .

[2]  T. Hänsch,et al.  Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms , 2002, Nature.

[3]  C. Gardiner,et al.  Cold Bosonic Atoms in Optical Lattices , 1998, cond-mat/9805329.

[4]  W. Krauth,et al.  Mott and Superfluid Transitions in a Strongly Interacting Lattice Boson System , 1991 .

[5]  L. Reatto Bose-Einstein Condensation for a Class of Wave Functions , 1969 .

[6]  Caffarel,et al.  Gutzwiller wave function for a model of strongly interacting bosons. , 1992, Physical review. B, Condensed matter.

[7]  Batrouni,et al.  Quantum critical phenomena in one-dimensional Bose systems. , 1990, Physical review letters.

[8]  P. Straten,et al.  Quantum phases in an optical lattice , 2000, cond-mat/0011108.

[9]  S. Sorella Wave function optimization in the variational Monte Carlo method , 2005, cond-mat/0502553.

[10]  D. Jaksch,et al.  Dynamics of the superfluid to Mott-insulator transition in one dimension (13 pages) , 2004, cond-mat/0405580.

[11]  Nevill Mott,et al.  Metal-Insulator Transition , 1968 .

[12]  Fisher,et al.  Boson localization and the superfluid-insulator transition. , 1989, Physical review. B, Condensed matter.

[13]  P. Horsch,et al.  Close Relation between Localized-Electron Magnetism and the Paramagnetic Wave Function of Completely Itinerant Electrons , 1982 .

[14]  T. Esslinger,et al.  Transition from a strongly interacting 1d superfluid to a Mott insulator. , 2003, Physical review letters.

[15]  Unconventional metal-insulator transition in two dimensions , 2005, cond-mat/0509062.

[16]  R. Roth,et al.  Dynamic structure factor of ultracold Bose and Fermi gases in optical lattices , 2004, cond-mat/0407361.

[17]  D. Rokhsar,et al.  Gutzwiller projection for bosons. , 1991, Physical review. B, Condensed matter.

[18]  L. Reatto,et al.  Phonons and the Properties of a Bose System , 1967 .

[19]  G. Blatter,et al.  Dynamical properties of ultracold bosons in an optical lattice , 2006, cond-mat/0610773.

[20]  T. D. Kuehner,et al.  Phases of the one-dimensional Bose-Hubbard model , 1997, cond-mat/9712307.

[21]  T. Gaskell The Collective Treatment of a Fermi Gas: II , 1961 .

[22]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[23]  Michele Fabrizio,et al.  Variational description of Mott insulators. , 2004, Physical Review Letters.

[24]  B. Svistunov,et al.  Phase diagram and thermodynamics of the three-dimensional Bose-Hubbard model , 2007, cond-mat/0701178.