Robust maximum likelihood estimation in the linear model

This paper addresses the problem of maximum likelihood parameter estimation in linear models affected by Gaussian noise, whose mean and covariance matrix are uncertain. The proposed estimate maximizes a lower bound on the worst-case (with respect to the uncertainty) likelihood of the measured sample, and is computed solving a semidefinite optimization problem (SDP). The problem of linear robust estimation is also studied in the paper, and the statistical and optimality properties of the resulting linear estimator are discussed.

[1]  L. Ghaoui,et al.  Measurement‐scheduled control for the RTAC problem: an LMI approach , 1998 .

[2]  Ricardo D. Fierro,et al.  The Total Least Squares Problem: Computational Aspects and Analysis (S. Van Huffel and J. Vandewalle) , 1993, SIAM Rev..

[3]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[4]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[5]  G. Golub,et al.  Parameter Estimation in the Presence of Bounded Data Uncertainties , 1998, SIAM J. Matrix Anal. Appl..

[6]  G. Calafiore,et al.  Worst-case state prediction under structured uncertainty , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[7]  L. Eldén Perturbation Theory for the Least Squares Problem with Linear Equality Constraints , 1980 .

[8]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[9]  Å. Björck Component-wise perturbation analysis and error bounds for linear least squares solutions , 1991 .

[10]  Ali H. Sayed,et al.  Linear Estimation (Information and System Sciences Series) , 2000 .

[11]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[12]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[13]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[14]  L. El Ghaoui,et al.  Measurement-scheduled control for the RTAC problem , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[15]  Shinji Hara,et al.  Simultaneous Modeling and Synthesis for Robust Control by LFT Scaling , 1996 .

[16]  A. Tits,et al.  Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics , 1991 .

[17]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[18]  Lihua Xie,et al.  Robust Kalman filtering for uncertain discrete-time systems , 1994, IEEE Trans. Autom. Control..

[19]  D.G. Dudley,et al.  Dynamic system identification experiment design and data analysis , 1979, Proceedings of the IEEE.

[20]  Jakob Stoustrup,et al.  Proceedings of the American Control Conference, Albuquerque, New Mexico , 1997 .

[21]  A. N. Tikhonov,et al.  Solutions of ill-posed problems , 1977 .

[22]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[23]  K. Poolla,et al.  An LFT approach to parameter estimation , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[24]  R. Wolpert,et al.  Likelihood Principle , 2022, The SAGE Encyclopedia of Research Design.

[25]  Giuseppe Carlo Calafiore,et al.  Experiment design for robot dynamic calibration , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[26]  Laurent El Ghaoui,et al.  Robust Solutions to Uncertain Semidefinite Programs , 1998, SIAM J. Optim..