Rank two bipartite bound entangled states do not exist

We explore the relation between the rank of a bipartite density matrix and the existence of bound entanglement. We show a relation between the rank, marginal ranks, and distillability of a mixed state and use this to prove that any rank n bound entangled state must have support on no more than an n × n Hilbert space. A direct consequence of this result is that there are no bipartite bound entangled states of rank two. We also show that a separability condition in terms of a quantum entropy inequality is associated with the above results. We explore the idea of how many pure states are needed in a mixture to cancel the distillable entanglement of a Schmidt rank n pure state and provide a lower bound of n - 1. We also prove that a mixture of a non-zero amount of any pure entangled state with a pure product state is distillable.

[1]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[2]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[3]  M. Horodecki,et al.  Quantum α-entropy inequalities: independent condition for local realism? , 1996 .

[4]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[5]  P. Shor,et al.  Unextendible Product Bases, Uncompletable Product Bases and Bound Entanglement , 1999, quant-ph/9908070.

[6]  K. Życzkowski On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.

[7]  J. Cirac,et al.  Irreversibility in asymptotic manipulations of entanglement. , 2001, Physical review letters.

[8]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[9]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[10]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[11]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[12]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[13]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[14]  M. Horodecki,et al.  Reduction criterion of separability and limits for a class of distillation protocols , 1999 .

[15]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[16]  M. Horodecki,et al.  Inseparable Two Spin- 1 2 Density Matrices Can Be Distilled to a Singlet Form , 1997 .

[17]  A. Uhlmann Entropy and Optimal Decompositions of States Relative to a Maximal Commutative Subalgebra , 1997, quant-ph/9704017.

[18]  Ashish V. Thapliyal,et al.  Evidence for bound entangled states with negative partial transpose , 1999, quant-ph/9910026.

[19]  M. Horodecki,et al.  The asymptotic entanglement cost of preparing a quantum state , 2000, quant-ph/0008134.

[20]  J. Cirac,et al.  Distillability and partial transposition in bipartite systems , 1999, quant-ph/9910022.

[21]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[22]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[23]  Ashish V. Thapliyal Multipartite pure-state entanglement , 1998 .