Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents.

BACKGROUND The DNA-repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) inhibits the killing of tumor cells by alkylating agents. MGMT activity is controlled by a promoter; methylation of the promoter silences the gene in cancer, and the cells no longer produce MGMT. We examined gliomas to determine whether methylation of the MGMT promoter is related to the responsiveness of the tumor to alkylating agents. METHODS We analyzed the MGMT promoter in tumor DNA by a methylation-specific polymerase-chain-reaction assay. The gliomas were obtained from patients who had been treated with carmustine (1,3-bis(2-chloroethyl)-1-nitrosourea, or BCNU). The molecular data were correlated with the clinical outcome. RESULTS The MGMT promoter was methylated in gliomas from 19 of 47 patients (40 percent). This finding was associated with regression of the tumor and prolonged overall and disease-free survival. It was an independent and stronger prognostic factor than age, stage, tumor grade, or performance status. CONCLUSIONS Methylation of the MGMT promoter in gliomas is a useful predictor of the responsiveness of the tumors to alkylating agents.

[1]  J. Herman,et al.  Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. , 2000, Cancer research.

[2]  J. Herman,et al.  DNA hypermethylation in tumorigenesis: epigenetics joins genetics. , 2000, Trends in genetics : TIG.

[3]  M. Berger,et al.  O6-methylguanine-DNA methyltransferase-deficient phenotype in human gliomas: frequency and time to tumor progression after alkylating agent-based chemotherapy. , 1999, Clinical cancer research : an official journal of the American Association for Cancer Research.

[4]  J. Herman,et al.  Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is a common event in primary human neoplasia. , 1999, Cancer research.

[5]  T. Brent,et al.  Methylation of selected CpGs in the human O6‐methylguanine‐DNA methyltransferase promoter region as a marker of gene silencing , 1999, Molecular carcinogenesis.

[6]  M. Berger,et al.  O 6-Methylguanine-DNA Methyltransferase-deficient Phenotype in Human Gliomas : Frequency and Time to Tumor Progression after Alkylating Agent-based Chemotherapy 1 , 1999 .

[7]  M M Haglund,et al.  Phase I trial of O6-benzylguanine for patients undergoing surgery for malignant glioma. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[8]  H. Eyre,et al.  Correlation of tumor O6 methylguanine-DNA methyltransferase levels with survival of malignant astrocytoma patients treated with bis-chloroethylnitrosourea: a Southwest Oncology Group study. , 1998, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  M. Berger,et al.  O6-methylguanine-DNA methyltransferase activity in adult gliomas: relation to patient and tumor characteristics. , 1998, Cancer research.

[10]  T. Brent,et al.  Methylation hot spots in the 5' flanking region denote silencing of the O6-methylguanine-DNA methyltransferase gene. , 1997, Cancer research.

[11]  J. Costello,et al.  Methylation of discrete regions of the O6-methylguanine DNA methyltransferase (MGMT) CpG island is associated with heterochromatinization of the MGMT transcription start site and silencing of the gene , 1997, Molecular and cellular biology.

[12]  M. Dolan,et al.  O6-benzylguanine and its role in chemotherapy. , 1997, Clinical cancer research : an official journal of the American Association for Cancer Research.

[13]  J. Herman,et al.  Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  M. Prados,et al.  Retrospective study of the correlation between the DNA repair protein alkyltransferase and survival of brain tumor patients treated with carmustine. , 1996, Cancer research.

[15]  M. Dolan,et al.  Structure, function, and inhibition of O6-alkylguanine-DNA alkyltransferase. , 1995, Progress in nucleic acid research and molecular biology.

[16]  M. Berger,et al.  Comparison of O6-methylguanine-DNA methyltransferase activity in brain tumors and adjacent normal brain. , 1993, Cancer research.

[17]  D. Ludlum DNA alkylation by the haloethylnitrosoureas: nature of modifications produced and their enzymatic repair or removal. , 1990, Mutation research.

[18]  M. Dolan,et al.  Depletion of mammalian O6-alkylguanine-DNA alkyltransferase activity by O6-benzylguanine provides a means to evaluate the role of this protein in protection against carcinogenic and therapeutic alkylating agents. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Hilton,et al.  Pharmacology of cyclophosphamide and metabolites. , 1981, Cancer treatment reports.