Stabilities and properties of O3–HOCl complexes: A computational study

[1]  A. Piccard Between earth and sky , 1950 .

[2]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[3]  F. Arnold,et al.  High-sensitivity detection of negative ions in the stratosphere , 1981, Nature.

[4]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .

[5]  Michael J. Frisch,et al.  Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets , 1984 .

[6]  B. Heikes,et al.  Chemical mechanisms of acid generation in the troposphere , 1985, Nature.

[7]  M. Molina,et al.  Antarctic Stratospheric Chemistry of Chlorine Nitrate, Hydrogen Chloride, and Ice: Release of Active Chlorine , 1987, Science.

[8]  H. Schlager,et al.  Balloon-borne composition measurements of stratospheric negative ions and inferred sulfuric acid vapor abundances during the MAP/GLOBUS 1983 campaign , 1987 .

[9]  R. A. Cox,et al.  The stability and photochemistry of dimers of the ClO radical and implications for Antarctic ozone depletion , 1988, Nature.

[10]  J. Kaye,et al.  Chemistry and transport in a three‐dimensional stratospheric model: Chlorine species during a simulated stratospheric warming , 1989 .

[11]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[12]  S. Sander,et al.  Rate of formation of the ClO dimer in the polar stratosphere: implications for ozone loss. , 1989, Science.

[13]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[14]  Owen Johnson,et al.  The development of versions 3 and 4 of the Cambridge Structural Database System , 1991, J. Chem. Inf. Comput. Sci..

[15]  M. J. Molina,et al.  STATUS OF STRATOSPHERIC OZONE DEPLETION , 1993 .

[16]  J. P. Smith,et al.  Visible and near‐ultraviolet spectroscopy at McMurdo Station, Antarctica: 9. Observations of OClO from April to October 1991 , 1993 .

[17]  J. S. Francisco An ab initio study of the structure and stability of Cl− · HOCl anionic complex , 1996 .

[18]  J. M. Bofill,et al.  The Mechanism of Methoxy Radical Oxidation by O2 in the Gas Phase. Computational Evidence for Direct H Atom Transfer Assisted by an Intermolecular Noncovalent O···O Bonding Interaction , 1999 .

[19]  P Hobza,et al.  Noncovalent interactions: a challenge for experiment and theory. , 2000, Chemical reviews.

[20]  R. Escribano,et al.  Structure and spectra of HOCl(H{sub 2}O){sub n} clusters, n = 1--4: A theoretical calculation , 2000 .

[21]  J. S. Francisco,et al.  Ab Initio Characterization of the Structure, Vibrational, and Energetic Properties of Br-·HOCl, Cl-·HOBr, and Br-·HOBr Anionic Complexes , 2001 .

[22]  J. Elguero,et al.  Discrimination of hydrogen-bonded complexes with axial chirality , 2002 .

[23]  A. Jalbout,et al.  Thermochemical stability of the HO2–HClO4 complex , 2003 .

[24]  R. N. Schindler,et al.  Observation of a Heterogeneous Source of OClO from the Reaction of ClO Radicals on Ice , 2004 .

[25]  U. Platt,et al.  A one dimensional model study of the mechanism of halogen liberation and vertical transport in the polar troposphere , 2004 .

[26]  I. V. Nikitin Oxy acids of halogens HOHal , 2004 .

[27]  L. Pejov,et al.  Computational investigation of the weakly bound dimers HOX...SO(3) (X = F, Cl, Br). , 2005, The journal of physical chemistry. A.

[28]  A. H. Pakiari,et al.  Closed shell oxygen–oxygen bonding interaction based on electron density analysis , 2007 .