Ecofriendly AgBiS2 Nanocrystal Photoanode for Highly Efficient Visible-Light-Driven Photoelectrochemical Water Splitting

[1]  Jae Hyun Kim,et al.  Highly Efficient (>9%) Lead‐Free AgBiS2 Colloidal Nanocrystal/Organic Hybrid Solar Cells , 2022, Advanced Energy Materials.

[2]  Jin-seong Park,et al.  Ultra-stable all-inorganic silver bismuth sulfide colloidal nanocrystal photovoltaics using pin type architecture , 2021, Journal of Power Sources.

[3]  G. Konstantatos,et al.  Colloidal AgBiS2 nanocrystals with reduced recombination yield 6.4% power conversion efficiency in solution-processed solar cells , 2020, Nano Energy.

[4]  Ahmad R. Kirmani,et al.  A Chemically Orthogonal Hole Transport Layer for Efficient Colloidal Quantum Dot Solar Cells , 2020, Advanced materials.

[5]  Xiaofei Yang,et al.  Near-Complete Suppression of Oxygen Evolution for Photoelectrochemical H2O Oxidative H2O2 Synthesis. , 2020, Journal of the American Chemical Society.

[6]  Yong Zhao,et al.  Controlled hydrothermal synthesis and photoelectrochemical properties of Bi2S3/TiO2 nanotube arrays heterostructure , 2019, Journal of Alloys and Compounds.

[7]  Qiao Chen,et al.  Defect-Rich ZnO Nanorod Arrays for Efficient Solar Water Splitting , 2019, ACS Applied Nano Materials.

[8]  M. Ko,et al.  Highly loaded PbS/Mn-doped CdS quantum dots for dual application in solar-to-electrical and solar-to-chemical energy conversion , 2018, Applied Catalysis B: Environmental.

[9]  K. Yong,et al.  CdS/CdSe co-sensitized brookite H:TiO2 nanostructures: Charge carrier dynamics and photoelectrochemical hydrogen generation , 2018, Applied Catalysis B: Environmental.

[10]  M. A. Ibrahim,et al.  Effect of Film Thickness on Photoelectrochemical Performance of SnO2 Prepared via AACVD , 2018 .

[11]  W. Wei,et al.  Self-assembled polymer phenylethnylcopper nanowires for photoelectrochemical and photocatalytic performance under visible light , 2018, Applied Catalysis B: Environmental.

[12]  L. Quan,et al.  Chloride Passivation of ZnO Electrodes Improves Charge Extraction in Colloidal Quantum Dot Photovoltaics , 2017, Advanced materials.

[13]  Bin Wang,et al.  Photoelectrochemical hydrogen production at peak efficiency over 10% via PbSe QDs/TiO2 nanotube array photoanodes , 2017 .

[14]  Ashley R. Marshall,et al.  Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100% , 2017, Nature Energy.

[15]  Todd G. Deutsch,et al.  Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures , 2017, Nature Energy.

[16]  Dong Wang,et al.  Supramolecular organic nanofibers with highly efficient and stable visible light photooxidation performance , 2017 .

[17]  Mark D. Symes,et al.  Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting , 2017 .

[18]  Jie Li,et al.  A novel Bi2S3 nanowire @ TiO2 nanorod heterogeneous nanostructure for photoelectrochemical hydrogen generation , 2016 .

[19]  G. Konstantatos,et al.  Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals , 2016, Nature Photonics.

[20]  Nathan S Lewis,et al.  Research opportunities to advance solar energy utilization , 2016, Science.

[21]  J. Martens,et al.  Solar hydrogen reaching maturity , 2015 .

[22]  V. Zardetto,et al.  Solution processed bismuth sulfide nanowire array core/silver shuffle shell solar cells , 2015 .

[23]  Shaohua Shen,et al.  Surface Engineered Doping of Hematite Nanorod Arrays for Improved Photoelectrochemical Water Splitting , 2014, Scientific Reports.

[24]  C. Mullins,et al.  Nanostructured Bi2S3/WO3 heterojunction films exhibiting enhanced photoelectrochemical performance , 2013 .

[25]  Y. Tachibana,et al.  Artificial photosynthesis for solar water-splitting , 2012, Nature Photonics.

[26]  A. Tok,et al.  Quantum-dot-sensitized TiO2 inverse opals for photoelectrochemical hydrogen generation. , 2012, Small.

[27]  Xiaolin Zheng,et al.  Branched TiO₂ nanorods for photoelectrochemical hydrogen production. , 2011, Nano letters.

[28]  Michael Grätzel,et al.  Recent advances in sensitized mesoscopic solar cells. , 2009, Accounts of chemical research.

[29]  Yiping Zhao,et al.  Photoelectrochemical Study of Nanostructured ZnO Thin Films for Hydrogen Generation from Water Splitting , 2009 .

[30]  M. Trari,et al.  Visible light induced hydrogen evolution over the heterosystem Bi2S3/TiO2 , 2007 .

[31]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[32]  W. Colella,et al.  Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles , 2005, Science.

[33]  R. Service The Carbon Conundrum , 2004, Science.

[34]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[35]  Zhiming M. Wang,et al.  “Green”, gradient multi-shell CuInSe2/(CuInSexS1-x)5/CuInS2 quantum dots for photo-electrochemical hydrogen generation , 2021 .

[36]  Andreas Poullikkas,et al.  A comparative overview of hydrogen production processes , 2017 .

[37]  I. Dincer Green methods for hydrogen production , 2012 .