Fault Diagnosis of Induction Motors Based on RBF Neural Network

In order to improve the diagnosis accuracy of stator short circuit faults of three-phase induction motors, in this paper, a method using three-layered RBF neural network is proposed to diagnose the short circuit faults on the basis of analysis of structure and algorithm of RBF neural network. Then the approach to establish RBF neural network and the influence of different expanding coefficients upon the diagnosis accuracy are illustrated. The simulation results show that RBF neural network can successfully diagnose and classify six typical short circuit faults of induction motors. This method has a faster speed, higher accuracy and it needs fewer samples. In conclusion, RBF neural network is practical, efficient and intelligent in fault diagnosis of induction motors.