Shock structure due to stochastic forcing and the time reversal of nonlinear waves

This paper is concerned with the study of the deformation of a nonlinear pulse traveling in a random medium. We consider shallow water waves with a spatially random depth. We demonstrate that in the presence of properly scaled stochastic forcing the solution to the nonlinear conservation law is regularized leading to a viscous shock profile. This enables us to perform time-reversal experiments beyond the critical time for shock formation.

[1]  Water Waves: Linear Potential Theory Results Validated with a Hydrostatic Navier-Stokes Model , 1998 .

[2]  Jean-Pierre Fouque,et al.  Spreading of a Pulse Travelling in Random Media , 1994 .

[3]  井上 良紀,et al.  流体力学用語集 非線形音響学(Nonlinear acoustics) , 1995 .

[4]  J L Thomas,et al.  Breaking of time reversal invariance in nonlinear acoustics. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  Benjamin S. White,et al.  One-dimensional wave propagation in a highly discontinuous medium , 1988 .

[6]  Pawel Lewicki Long Time Evolution of Wavefronts in Random Media , 1994, SIAM J. Appl. Math..

[7]  André Nachbin,et al.  Dispersive Wave Attenuation Due to Orographic Forcing , 2004, SIAM J. Appl. Math..

[8]  R. T. Cheng,et al.  SEMI-IMPLICIT FINITE DIFFERENCE METHODS FOR THREE-DIMENSIONAL SHALLOW WATER FLOW , 1992 .

[9]  Knut Sølna,et al.  Apparent diffusion due to topographic microstructure in shallow waters , 2003 .

[10]  E. Zabolotskaya,et al.  Quasi-plane waves in the nonlinear acoustics of confined beams , 1969 .

[11]  R. Khas'minskii A Limit Theorem for the Solutions of Differential Equations with Random Right-Hand Sides , 1966 .

[12]  M. Fink,et al.  Taking advantage of multiple scattering to communicate with time-reversal antennas. , 2003, Physical review letters.

[13]  M. Fink,et al.  Time-reversal acoustics in biomedical engineering. , 2003, Annual review of biomedical engineering.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Knut Sølna,et al.  Time-Reversal Aperture Enhancement , 2003, Multiscale Model. Simul..

[16]  A. Borodin,et al.  A limit theorem for solutions of di erential equations with random right-hand side , 1978 .

[17]  Jean-Pierre Fouque,et al.  Time-Reversed Refocusing of Surface Water Waves , 2003, Multiscale Model. Simul..

[18]  Jean-Pierre Fouque,et al.  A time-reversal method for an acoustical pulse propagating in randomly layered media , 1997 .

[19]  Mathias Fink,et al.  Time reversal techniques in ultrasonic nondestructive testing of scattering media , 2002 .

[20]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[21]  Robert Burridge,et al.  Multimode, one-dimensional wave propagation in a highly discontinuous medium , 1989 .

[22]  George Papanicolaou,et al.  Frequency Content of Randomly Scattered Signals , 1991, SIAM Rev..

[23]  R. Burridge,et al.  The accuracy of the O'Doherty-Anstey approximation for wave propagation in highly disordered stratified media , 1995 .

[24]  George Papanicolaou,et al.  Pulse stabilization in a strongly heterogeneous layered medium , 1994 .

[25]  Mathias Fink,et al.  Time-Reversed Acoustics , 1999 .

[26]  N. A. Anstey,et al.  Reflections on AMPLITUDES , 1971 .

[27]  Knut Sølna,et al.  Focusing of time-reversed reflections , 2002 .