Standing and travelling waves in a spherical brain model: The Nunez model revisited

The Nunez model for the generation of electroencephalogram (EEG) signals is naturally described as a neural field model on a sphere with space-dependent delays. For simplicity, dynamical realisations of this model either as a damped wave equation or an integro-differential equation, have typically been studied in idealised one dimensional or planar settings. Here we revisit the original Nunez model to specifically address the role of spherical topology on spatio-temporal pattern generation. We do this using a mixture of Turing instability analysis, symmetric bifurcation theory, centre manifold reduction and direct simulations with a bespoke numerical scheme. In particular we examine standing and travelling wave solutions using normal form computation of primary and secondary bifurcations from a steady state. Interestingly, we observe spatio-temporal patterns which have counterparts seen in the EEG patterns of both epileptic and schizophrenic brain conditions.

[1]  Stephen Coombes,et al.  Large-scale neural dynamics: Simple and complex , 2010, NeuroImage.

[2]  D. Hansel,et al.  Role of delays in shaping spatiotemporal dynamics of neuronal activity in large networks. , 2005, Physical review letters.

[3]  J. Cowan,et al.  A spherical model for orientation and spatial-frequency tuning in a cortical hypercolumn. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[4]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[5]  Jon Jacobsen,et al.  TURING PATTERNS ON GROWING SPHERES: THE EXPONENTIAL CASE , 2007 .

[6]  P. Tass Cortical pattern formation during visual hallucinations , 1995 .

[7]  I. Graham,et al.  Spatio-temporal pattern formation on spherical surfaces: numerical simulation and application to solid tumour growth , 2001, Journal of mathematical biology.

[8]  Thomas J. Whitford,et al.  Spatio-temporal EEG waves in first episode schizophrenia , 2009, Clinical Neurophysiology.

[9]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[10]  M. Golubitsky,et al.  Geometric visual hallucinations, Euclidean symmetry and the functional architecture of striate cortex. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  P. Nunez,et al.  Neocortical Dynamics and Human EEG Rhythms , 1995 .

[12]  P. Matthews,et al.  Invariants, equivariants and characters in symmetric bifurcation theory , 2008, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[13]  J. Parra,et al.  Epilepsies as Dynamical Diseases of Brain Systems: Basic Models of the Transition Between Normal and Epileptic Activity , 2003, Epilepsia.

[14]  G. Schubert,et al.  Three‐dimensional spherical models of layered and whole mantle convection , 1993 .

[15]  John R. Terry,et al.  A phenomenological model of seizure initiation suggests network structure may explain seizure frequency in idiopathic generalised epilepsy , 2012, Journal of mathematical neuroscience.

[16]  P C Matthews Pattern formation on a sphere. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[17]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[18]  J. Cowan,et al.  Secondary Bifurcation in Neuronal Nets , 1980 .

[19]  Thomas Wennekers,et al.  Pattern formation in intracortical neuronal fields , 2003, Network.

[20]  O. Faugeras,et al.  Stability of the stationary solutions of neural field equations with propagation delays , 2011, Journal of mathematical neuroscience.

[21]  F. H. Lopes da Silva,et al.  Biophysical aspects of EEG and magnetoencephalogram generation , 1998 .

[22]  S. Lunel,et al.  Delay Equations. Functional-, Complex-, and Nonlinear Analysis , 1995 .

[23]  G. Knightly,et al.  Buckled states of a spherical shell under uniform external pressure , 1980 .

[24]  W. J. Freeman,et al.  Alan Turing: The Chemical Basis of Morphogenesis , 1986 .

[25]  Romain Veltz An analytical method for computing Hopf bifurcation curves in neural field networks with space-dependent delays , 2011 .

[26]  Gerhard Dangelmayr,et al.  Dynamics and bifurcation of patterns in dissipative systems , 2004 .

[27]  A. M. Turing,et al.  The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[28]  H. Haken,et al.  Field Theory of Electromagnetic Brain Activity. , 1996, Physical review letters.

[29]  Olivier Faugeras,et al.  Some theoretical and numerical results for delayed neural field equations , 2010 .

[30]  Olivier D. Faugeras,et al.  Local/Global Analysis of the Stationary Solutions of Some Neural Field Equations , 2009, SIAM J. Appl. Dyn. Syst..

[31]  Bard Ermentrout,et al.  Neural Nets as Spatio-temporal Pattern Forming Systems , 1997 .

[32]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[33]  D. Liley,et al.  Modeling electrocortical activity through improved local approximations of integral neural field equations. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  P. Matthews,et al.  Dynamic instabilities in scalar neural field equations with space-dependent delays , 2007 .

[35]  D. Ragozin,et al.  Uniform convergence of spherical harmonic expansions , 1971 .

[36]  J. Cowan,et al.  A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue , 1973, Kybernetik.

[37]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[38]  R. Kötter,et al.  Connecting Mean Field Models of Neural Activity to EEG and fMRI Data , 2010, Brain Topography.

[39]  P. Chossat,et al.  Methods in Equivariant Bifurcations and Dynamical Systems , 2000 .

[40]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[41]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[42]  David L. Ragozin,et al.  Polynomial approximation on compact manifolds and homogeneous spaces , 1970 .

[43]  David H. Sattinger,et al.  Group theoretic methods in bifurcation theory , 1979 .

[44]  Steven J. Ruuth,et al.  The Stability of Localized Spot Patterns for the Brusselator on the Sphere , 2014, SIAM J. Appl. Dyn. Syst..

[45]  S. Coombes,et al.  WAVES IN RANDOM NEURAL MEDIA , 2012 .

[46]  Yu. A. Kuznetsov,et al.  On local bifurcations in neural field models with transmission delays , 2012, Journal of mathematical biology.

[47]  J. Cowan,et al.  The visual cortex as a crystal , 2002 .

[48]  Randall J. LeVeque,et al.  Logically Rectangular Grids and Finite Volume Methods for PDEs in Circular and Spherical Domains , 2008, SIAM Rev..

[49]  J. Cowan,et al.  A mathematical theory of visual hallucination patterns , 1979, Biological Cybernetics.

[50]  S. Amari Dynamics of pattern formation in lateral-inhibition type neural fields , 1977, Biological Cybernetics.

[51]  P. Chossat,et al.  Steady-State bifurcation with 0(3)-Symmetry , 1991 .

[52]  L. Ingber,et al.  Theoretical and experimental electrophysiology in human neocortex: Multiscale correlates of conscious experience , 2013 .

[53]  B. Ermentrout Neural networks as spatio-temporal pattern-forming systems , 1998 .

[54]  Yu. A. Kuznetsov,et al.  Pitchfork–Hopf bifurcations in 1D neural field models with transmission delays , 2015 .

[55]  Ingo Bojak,et al.  Axonal Velocity Distributions in Neural Field Equations , 2010, PLoS Comput. Biol..

[56]  P. Nunez,et al.  Neocortical dynamics due to axon propagation delays in cortico-cortical fibers: EEG traveling and standing waves with implications for top-down influences on local networks and white matter disease , 2014, Brain Research.

[57]  Viktor K. Jirsa,et al.  Spatiotemporal forward solution of the EEG and MEG using network modeling , 2002, IEEE Transactions on Medical Imaging.

[58]  Lester Ingber,et al.  Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs. , 2010, Mathematical biosciences.

[59]  Axel Hutt,et al.  Activity spread and breathers induced by finite transmission speeds in two-dimensional neural fields. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[60]  P. Nunez The brain wave equation: a model for the EEG , 1974 .

[61]  Stephen Coombes,et al.  Neural ‘Bubble’ Dynamics Revisited , 2013, Cognitive Computation.

[62]  Rachel Sigrist Hopf bifurcation on a sphere , 2010 .

[63]  C. B. Price,et al.  TRAVELING TURING PATTERNS IN NONLINEAR NEURAL FIELDS , 1997 .

[64]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .