Visual movement detection under light- and dark-adaptation in the fly,Musca domestica

SummaryVisual movement detection has been investigated both under photopic and scotopic light conditions by measuring the optomotor turning responses of walking flies,Musca domestica. From the data it is concluded that the spatial sampling pattern underlying movement detection changes with the average stimulus brightness. At high luminance nearest-neighbour interactions clearly dominate whereas at very low light intensities interactions between receptors having one, two and three times the minimum angular separation contribute with about equal strength to the response (Figs. 6, 7). This change in the spatial interaction pattern may be based on neuronal recruitment of wide-angle movement detectors at low light levels or, alternatively, on neural pooling of signals from neighbouring receptors prior to the movement-specific interactions. Both mechanisms may provide a gain in absolute light sensitivity at the cost of spatial acuity.The temporal properties of movement detection also change with stimulus brightness. High grating speeds are detected less efficiently at low luminance (Fig. 3). These temporal changes may be attributed to equivalent changes in the photoreceptor responses.Negative optomotor responses may be elicited by a pair of test stimuli separated in visual angle by about 15° corresponding to 7–8 rows of ommatidia (Figs. 9, 10). This unexpected behaviour is suggested to reflect the influence of lateral inhibition which extends, in the periphery of the visual system, with decreasing strength over a range of at least 5 rows of ommatidia. Movement-specific interactions on the other hand do not appear to extend beyond 4–5 rows of ommatidia.

[1]  M. Heisenberg,et al.  The use of mutations for the partial degradation of vision inDrosophila melanogaster , 1975, Journal of comparative physiology.

[2]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[3]  Giulio Fermi,et al.  Optomotorische Reaktionen der Fliege Musca Domestica , 1963, Kybernetik.

[4]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[5]  K. Kirschfeld The visual system of Musca: Studies on optics, structure and function , 1972 .

[6]  H. Eckert Die spektrale Empfindlichkeit des Komplexauges von Musca (Bestimmung aus Messungen der optomotorischen reaktion) , 1971, Kybernetik.

[7]  K. Kirschfeld,et al.  Lateral Inhibition in the Com pound Eye of the Fly, Musca , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[8]  T. Poggio,et al.  Considerations on models of movement detection , 1973, Kybernetik.

[9]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[10]  H. Barlow Dark and Light Adaptation: Psychophysics , 1972 .

[11]  Hendrik Eckert,et al.  Optomotorische Untersuchungen am visuellen System der Stubenfliege Musca domestica L , 1973, Kybernetik.

[12]  Allan W. Snyder,et al.  Acuity of compound eyes: Physical limitations and design , 2004, Journal of comparative physiology.

[13]  Martin Heisenberg,et al.  The rôle of retinula cell types in visual behavior ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[14]  A. Snyder,et al.  The Relationship between Visual Acuity and Illumination in the Fly, Lucilia sericata , 1978, Zeitschrift fur Naturforschung. Section C, Biosciences.

[15]  K. Kirschfeld,et al.  Optische Eigenschaften der Ommatidien im Komplexauge von Musca , 1968, Kybernetik.

[16]  Erich Buchner,et al.  Elementary detectors for vertical movement in the visual system of Drosophila , 1978, Biological Cybernetics.

[17]  B. Pick,et al.  Specific misalignments of rhabdomere visual axes in the neural superposition eye of dipteran flies , 1977, Biological Cybernetics.

[18]  F. Zettler,et al.  Neuronal Processing in the First Optic Neuropile of the Compound Eye of the Fly , 1976 .

[19]  T. Collett,et al.  How hoverflies compute interception courses , 1978, Journal of comparative physiology.

[20]  Bernward Pick,et al.  Visual Flicker Induces Orientation Behaviour in the Fly Musca , 1974 .

[21]  B. Hassenstein,et al.  Über die Wahrnehmung der Bewegung von Figuren und unregelmässigen Helligkeitsmustern , 1957, Zeitschrift für vergleichende Physiologie.

[22]  B. Hassenstein,et al.  Ommatidienraster und afferente Bewegungsintegration , 1951, Zeitschrift für vergleichende Physiologie.

[23]  Friedrich Zettler,et al.  Die Abhängigkeit des Übertragungsverhaltens von Frequenz und Adaptationszustand; gemessen am einzelnen Lichtrezeptor von Calliphora erythrocephala , 1969, Zeitschrift für vergleichende Physiologie.

[24]  K. Mimura Some spatial properties in the first optic ganglion of the fly , 1976, Journal of comparative physiology.

[25]  Roger C. Hardie,et al.  Electrophysiological analysis of fly retina. I: Comparative properties of R1-6 and R 7 and 8 , 1979, Journal of comparative physiology.

[26]  J. Scholes The electrical responses of the retinal receptors and the lamina in the visual system of the fly musca , 1969, Kybernetik.

[27]  U. Smola Voltage Noise in Insect Visual Cells , 1976 .

[28]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[29]  K. Kirschfeld,et al.  Die projektion der optischen umwelt auf das raster der rhabdomere im komplexauge von Musca , 2004, Experimental Brain Research.

[30]  Roger C. Hardie,et al.  Common strategies for light adaptation in the peripheral visual systems of fly and dragonfly , 1978, Journal of comparative physiology.