Thermodynamic properties of a full-replica-symmetry-breaking Ising spin glass on lattice gas: The random Blume-Emery-Griffiths-Capel model

An extensive study of the mean-field static solution of the random Blume-Emery-Griffiths-Capel model, an Ising-spin lattice gas with quenched random magnetic interaction, is performed. The model exhibits a paramagnetic phase, described by a stable replica-symmetric solution. When the temperature is decreased or the density increases, the system undergoes a phase transition to a full-replica-symmetry-breaking spin-glass phase. The nature of the transition can be either of the second order (such as in the Sherrington-Kirkpatrick model) or, at temperatures below a given critical value, of the first order in the Ehrenfest sense, with a discontinuous jump of the order parameter and accompanied by a latent heat. In this last case, coexistence of phases takes place. The thermodynamics is worked out in the full-replica-symmetry-breaking scheme, and the related Parisi equations are solved using a pseudospectral method down to zero temperature.

[1]  A. Coniglio,et al.  Dynamics and thermodynamics of the spherical frustrated Blume-Emery-Griffiths model. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  A. Crisanti,et al.  First-order phase transition and phase coexistence in a spin-glass model. , 2002, Physical review letters.

[3]  A. Coniglio,et al.  Spin and density overlaps in the frustrated Ising lattice gas. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  A. Crisanti,et al.  Analysis of the infinity-replica symmetry breaking solution of the Sherrington-Kirkpatrick model. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[5]  A. Crisanti,et al.  The 3-SAT problem with large number of clauses in the ∞-replica symmetry breaking scheme , 2001, cond-mat/0108433.

[6]  F. Nobre,et al.  The spin-1 Ising spin glass: a renormalization-group approach , 2000 .

[7]  F. A. Costa,et al.  Zero-temperature TAP equations for the Ghatak-Sherrington model , 2000, cond-mat/0005029.

[8]  F. Nobre,et al.  Effects of random biquadratic couplings in a spin-1 spin-glass model , 2000, cond-mat/0005020.

[9]  A. Coniglio,et al.  Macroscopic glassy relaxations and microscopic motions in a frustrated lattice gas , 1997, cond-mat/9706282.

[10]  J. J. Arenzon,et al.  The Blume-Emery-Griffiths Spin Glass Model , 1997, cond-mat/9704142.

[11]  F. Nobre,et al.  SPIN-GLASS MODEL WITH UNIFORM BIQUADRATIC INTERACTIONS , 1997 .

[12]  G. R. Schreiber Frustrated Blume-Emery-Griffiths model , 1996, cond-mat/9612189.

[13]  J. J. Arenzon,et al.  Equilibrium Properties of the Ising Frustrated Lattice Gas , 1996, cond-mat/9607026.

[14]  T. Nieuwenhuizen Exactly solvable model of a quantum spin glass. , 1994, Physical review letters.

[15]  Frustrated percolation, spin glasses and glasses , 1994 .

[16]  S. Salinas,et al.  First-order transition in a spin-glass model , 1994 .

[17]  A. Crisanti,et al.  The sphericalp-spin interaction spin-glass model , 1993 .

[18]  A. Coniglio Connectivity properties in complex systems , 1993 .

[19]  A. Crisanti,et al.  The sphericalp-spin interaction spin glass model: the statics , 1992 .

[20]  Berker,et al.  Multicritical phase diagrams of the Blume-Emery-Griffiths model with repulsive biquadratic coupling. , 1991, Physical review letters.

[21]  T. R. Kirkpatrick,et al.  Connections between some kinetic and equilibrium theories of the glass transition. , 1987, Physical review. A, General physics.

[22]  A numerical study of the pure states of the Sherrington-Kirkpatrick spin glass model-a comparison with Parisi's replica-symmetry-breaking solution , 1987 .

[23]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[24]  P. Mottishaw First-Order Spin Glass Transitions: an Exact Solution , 1986 .

[25]  Potts and Related Glasses , 1986 .

[26]  Stability of a crystal-field split spin glass , 1985 .

[27]  Kanter,et al.  Mean-field theory of the Potts glass. , 1985, Physical review letters.

[28]  P. Goldbart,et al.  The failure of the Parisi scheme for spin glass models without reflection symmetry , 1985 .

[29]  D. Sherrington,et al.  Replica theory of the uniaxial quadrupolar glass , 1985 .

[30]  E. Gardner Spin glasses with p-spin interactions , 1985 .

[31]  M. Mézard,et al.  The simplest spin glass , 1984 .

[32]  H. Sommers,et al.  Distribution of frozen fields in the mean-field theory of spin glasses , 1984 .

[33]  Stability conditions of generalised Ising spin glass models , 1982 .

[34]  H. Sompolinsky,et al.  Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses , 1982 .

[35]  M. Gabay,et al.  A Parisi equation for Sompolinsky's solution of the SK model , 1982 .

[36]  H. Orland,et al.  Replica derivation of Sompolinsky free energy functional for mean field spin glasses , 1981 .

[37]  Haim Sompolinsky,et al.  Time-Dependent Order Parameters in Spin-Glasses , 1981 .

[38]  B. Derrida Random-Energy Model: Limit of a Family of Disordered Models , 1980 .

[39]  D. Thouless,et al.  Stability and susceptibility in Parisi's solution of a spin glass model , 1980 .

[40]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[41]  D. Sherrington,et al.  Crystal field effects in a general S Ising spin glass , 1977 .

[42]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[43]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[44]  V. J. Emery,et al.  Ising Model for the ? Transition and Phase Separation in He^{3}-He^{4} Mixtures , 1971 .

[45]  M. Blume THEORY OF THE FIRST-ORDER MAGNETIC PHASE CHANGE IN UO$sub 2$ , 1966 .