Models for Gas Hydrate-Bearing Sediments Inferred from Hydraulic Permeability and Elastic Velocities

..........................................................................................................................................................

[1]  Myung-Wook Lee Velocities and Attenuations of Gas Hydrate-Bearing Sediments , 2007 .

[2]  T. Plona,et al.  Anisotropic stress analysis from downhole acoustic logs in the JAPEX/JNOC/GSC et al. Mallik 5L-38 gas hydrate production research well , 2005 .

[3]  Myung W. Lee,et al.  Proposed moduli of dry rock and their application to predicting elastic velocities of sandstones , 2005 .

[4]  E. Peltzer,et al.  Deep sea NMR: Methane hydrate growth habit in porous media and its relationship to hydraulic permeability, deposit accumulation, and submarine slope stability , 2003 .

[5]  John A. Hudson,et al.  Elastic properties of hydrate‐bearing sediments using effective medium theory , 2000 .

[6]  Pierre Henry,et al.  Formation of natural gas hydrates in marine sediments: 2. Thermodynamic calculations of stability conditions in porous sediments , 1999 .

[7]  Pierre Henry,et al.  Formation of natural gas hydrates in marine sediments 1. Conceptual model of gas hydrate growth conditioned by host sediment properties , 1999 .

[8]  G. Guérin,et al.  Characterization of in situ elastic properties of gas hydrate‐bearing sediments on the Blake Ridge , 1999 .

[9]  Amos Nur,et al.  Elastic‐wave velocity in marine sediments with gas hydrates: Effective medium modeling , 1999 .

[10]  William J. Winters,et al.  Properties of samples containing natural gas hydrate from the JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well, determined using Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI) , 1999 .

[11]  T. Collett Well log evaluation of gas hydrate saturations , 1998 .

[12]  R. Kleinberg,et al.  Fast Nmr Logging For Bound Fluid And Permeability , 1997 .

[13]  F. Cohen-Tenoudji,et al.  Extension of Biot's theory of wave propagation to frozen porous media , 1994 .

[14]  A. Nur,et al.  Rock physics for characterization of gas hydrates , 1993 .

[15]  Djebbar Tiab,et al.  Enhanced Reservoir Description: Using Core and Log Data to Identify Hydraulic (Flow) Units and Predict Permeability in Uncored Intervals/Wells , 1993 .

[16]  W. E. Kenyon,et al.  Nuclear magnetic resonance as a petrophysical measurement , 1992 .

[17]  R. Hyndman,et al.  A seismic study of methane hydrate marine bottom simulating reflectors , 1992 .

[18]  Amos Nur,et al.  COMPRESSIONAL VELOCITY AND POROSITY IN SAND-CLAY MIXTURES , 1992 .

[19]  W. E. Kenyon,et al.  Surface-to-volume ratio, charge density, nuclear magnetic relaxation, and permeability in clay-bearing sandstones , 1990 .

[20]  Carolyn A. Koh,et al.  Clathrate hydrates of natural gases , 1990 .

[21]  R. Carmichael Practical Handbook of Physical Properties of Rocks and Minerals , 1989 .

[22]  P. Doyen,et al.  Permeability, conductivity, and pore geometry of sandstone , 1988 .

[23]  Jack C. Parker,et al.  A parametric model for constitutive properties governing multiphase flow in porous media , 1987 .

[24]  Philip H. Nelson,et al.  Well logging for physical properties , 1985 .

[25]  G. Gardner,et al.  Velocity And Attenuation Of Elastic Waves In Sands , 1968 .

[26]  W. O. Winsauer,et al.  Resistivity of Brine-Saturated Sands in Relation to Pore Geometry , 1952 .