Local Discontinuous-Galerkin Schemes for Model Problems in Phase Transition Theory
暂无分享,去创建一个
[1] Richard D. James,et al. The propagation of phase boundaries in elastic bars , 1980 .
[2] Chi-Wang Shu,et al. The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .
[3] Philippe G. LeFloch,et al. Fully Discrete, Entropy Conservative Schemes of ArbitraryOrder , 2002, SIAM J. Numer. Anal..
[4] E. Tadmor. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems , 2003, Acta Numerica.
[5] J. Ericksen,et al. Equilibrium of bars , 1975 .
[6] George Em Karniadakis,et al. The Development of Discontinuous Galerkin Methods , 2000 .
[7] Xiaofeng Ren,et al. Finite Scale Microstructures in Nonlocal Elasticity , 2000 .
[8] Chi-Wang Shu,et al. The Runge-Kutta local projection $P^1$-discontinuous-Galerkin finite element method for scalar conservation laws , 1988, ESAIM: Mathematical Modelling and Numerical Analysis.
[9] Chi-Wang Shu,et al. A Local Discontinuous Galerkin Method for KdV Type Equations , 2002, SIAM J. Numer. Anal..
[10] Bernardo Cockburn. Discontinuous Galerkin methods , 2003 .
[11] B. McKinney,et al. Traveling Wave Solutions of the Modified Korteweg-deVries-Burgers Equation , 1995 .
[12] P. LeFloch. Hyperbolic Systems of Conservation Laws , 2002 .
[13] Bernardo Cockburn,et al. The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws , 1988 .
[14] Eitan Tadmor,et al. The numerical viscosity of entropy stable schemes for systems of conservation laws. I , 1987 .
[15] Frédéric Coquel,et al. Sharp and diffuse interface methods for phase transition problems in liquid-vapour flows , 2005 .
[16] Christian Rohde,et al. Scalar Conservation Laws with Mixed Local and Nonlocal Diffusion-Dispersion Terms , 2005, SIAM J. Math. Anal..
[17] Doron Levy,et al. Local discontinuous Galerkin methods for nonlinear dispersive equations , 2004 .
[18] Philippe G. LeFloch,et al. A fully discrete scheme for diffusive-dispersive conservation laws , 2001, Numerische Mathematik.
[19] B. Hayes,et al. Non-Classical Shocks and Kinetic Relations: Scalar Conservation Laws , 1997 .
[20] Philippe G. LeFloch,et al. Nonclassical Shocks and Kinetic Relations: Strictly Hyperbolic Systems , 2000, SIAM J. Math. Anal..
[21] P. LeFloch,et al. Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves , 2002 .
[22] Miloslav Feistauer,et al. On some aspects of the discontinuous Galerkin finite element method for conservation laws , 2003, Math. Comput. Simul..