On a Generalized Ky Fan Inequality and Asymptotically Strict Pseudocontractions in the Intermediate Sense

In this paper, two iterative algorithms are considered for a generalized Ky Fan inequality and a fixed point problem of asymptotically strict pseudocontractions in the intermediate sense. Strong and weak convergence theorems are established in real Hilbert spaces.

[1]  S. Reich Weak convergence theorems for nonexpansive mappings in Banach spaces , 1979 .

[2]  P. L. Combettes,et al.  The Convex Feasibility Problem in Image Recovery , 1996 .

[3]  S. Guu,et al.  Hybrid methods with regularization for minimization problems and asymptotically strict pseudocontractive mappings in the intermediate sense , 2009, Journal of Global Optimization.

[4]  Yeol Je Cho,et al.  Convergence of a modified Halpern-type iteration algorithm for quasi-phi-nonexpansive mappings , 2009, Appl. Math. Lett..

[5]  Hong-Kun Xu,et al.  Strong convergence of the CQ method for fixed point iteration processes , 2006 .

[6]  Yongfu Su,et al.  Strong convergence theorems for relatively nonexpansive mappings in a Banach space , 2007 .

[7]  Hong-Kun Xu,et al.  Existence and convergence for fixed points of mappings of asymptotically nonexpansive type , 1991 .

[8]  Jen-Chih Yao,et al.  On the Generalized Vector Variational Inequality Problem , 1997 .

[9]  Giuseppe Marino,et al.  WEAK AND STRONG CONVERGENCE THEOREMS FOR STRICT PSEUDO-CONTRACTIONS IN HILBERT SPACES , 2007 .

[10]  F. Browder,et al.  Construction of fixed points of nonlinear mappings in Hilbert space , 1967 .

[11]  Wataru Takahashi,et al.  Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem , 2007 .

[12]  William A. Kirk,et al.  A FIXED POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS , 1972 .

[13]  R. Rockafellar On the maximality of sums of nonlinear monotone operators , 1970 .

[14]  Yeol Je Cho,et al.  Convergence theorems of common fixed points for a family of Lipschitz quasi-pseudocontractions , 2009 .

[15]  J. Lindenstrauss,et al.  An example concerning fixed points , 1975 .

[16]  Liu Qihou,et al.  Convergence theorems of the sequence of iterates for asymptotically demicontractive and hemicontractive mappings , 1996 .

[17]  J Shamir,et al.  Image restoration by a novel method of parallel projection onto constraint sets. , 1995, Optics letters.

[18]  Regina S. Burachik,et al.  A convergence result for an outer approximation scheme , 2003 .

[19]  William A. Kirk,et al.  Fixed point theorems for non-Lipschitzian mappings of asymptotically nonexpansive type , 1974 .

[20]  Issara Inchan,et al.  Strong convergence theorems by hybrid method for asymptotically k-strict pseudo-contractive mapping in Hilbert space , 2009 .

[21]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .

[22]  G. Stampacchia,et al.  A remark on Ky fan's minimax principle , 2008 .

[23]  Shin Min Kang,et al.  Strong convergence of shrinking projection methods for quasi-ϕ-nonexpansive mappings and equilibrium problems , 2010, J. Comput. Appl. Math..

[24]  Jürgen Schu,et al.  Iterative construction of fixed points of asymptotically nonexpansive mappings , 1991 .

[25]  Alexey F. Izmailov,et al.  An Active-Set Newton Method for Mathematical Programs with Complementarity Constraints , 2008, SIAM J. Optim..

[26]  J. Schu,et al.  Weak and strong convergence to fixed points of asymptotically nonexpansive mappings , 1991, Bulletin of the Australian Mathematical Society.

[27]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[28]  Poom Kumam,et al.  A hybrid iterative scheme for equilibrium problems and fixed point problems of asymptotically k-strict pseudo-contractions , 2010, J. Comput. Appl. Math..

[29]  Monica Bianchi,et al.  Generalized monotone bifunctions and equilibrium problems , 1996 .

[30]  Simeon Reich,et al.  Convergence of iterates of asymptotically nonexpansive mappings in Banach spaces with the uniform Opial property , 1993 .

[31]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[32]  Y. Cho,et al.  Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems , 2009 .

[33]  Shin Min Kang,et al.  On hybrid projection methods for asymptotically quasi-phi-nonexpansive mappings , 2010, Appl. Math. Comput..

[34]  Jen-Chih Yao,et al.  Equilibrium Problems with Applications to Eigenvalue Problems , 2003 .

[35]  Hong-Kun Xu,et al.  Convergence of the modified Mann’s iteration method for asymptotically strict pseudo-contractions , 2008 .

[36]  Yeol Je Cho,et al.  Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces , 2009 .

[37]  Hong-Kun Xu,et al.  Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process , 1993 .

[38]  Jong Soo Jung,et al.  Strong convergence of iterative methods for k-strictly pseudo-contractive mappings in Hilbert spaces , 2010, Appl. Math. Comput..

[39]  Wataru Takahashi,et al.  STRONG AND WEAK CONVERGENCE THEOREMS FOR EQUILIBRIUM PROBLEMS AND RELATIVELY NONEXPANSIVE MAPPINGS IN BANACH SPACES , 2009 .

[40]  Wataru Takahashi,et al.  Weak Convergence Theorems for Nonexpansive Mappings and Monotone Mappings , 2003 .

[41]  Poom Kumam,et al.  A hybrid approximation method for equilibrium and fixed point problems for a monotone mapping and a nonexpansive mapping , 2008 .

[42]  A. Moudafi,et al.  SECOND-ORDER DIFFERENTIAL PROXIMAL METHODS FOR EQUILIBRIUM PROBLEMS , 2003 .

[43]  Paul-Emile Maingé,et al.  Strong convergence of an iterative method for hierarchical fixed point problems , 2007 .

[44]  I. Yamada,et al.  Hybrid Steepest Descent Method for Variational Inequality Problem over the Fixed Point Set of Certain Quasi-nonexpansive Mappings , 2005 .

[45]  K. A. Stewart,et al.  Image Recovery¿Theory and Applications , 1987 .

[46]  W. Takahashi,et al.  Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups , 2003 .

[47]  Wataru Takahashi,et al.  Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces , 2008 .

[48]  Chi Kin Chan,et al.  A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization , 2009 .