Immersogeometric analysis of moving objects in incompressible flows

Abstract We deploy the immersogeometric approach for tracking moving objects. The method immerses objects into non-boundary-fitted meshes and weakly enforces Dirichlet boundary conditions on the object boundaries. The object motion is driven by the integrated surface force and external body forces. A residual-based variational multiscale method is employed to stabilize the finite element formulation for incompressible flows. Adaptively refined quadrature rules are used to better capture the geometry of the immersed boundaries by accurately integrating the intersected background elements. Treatment for the freshly-cleared nodes (i.e. background mesh nodes that are inside the object at one time step, but are in the fluid domain at the next time step) is considered. We assess the accuracy of the method by analyzing object motion in different flow structures including objects freely dropping in viscous fluids and particle focusing in unobstructed and obstructed micro-channels. We show that key quantities of interest are in very good agreements with analytical, numerical and experimental solutions. We also show a much better computational efficiency of this framework than current commercial codes using adaptive boundary-fitted approaches. We anticipate deploying this framework for applications of particle inertial migration in microfluidic channels.

[1]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[2]  Xingshi Wang,et al.  Modified Immersed Finite Element Method For Fully-Coupled Fluid-Structure Interations. , 2013, Computer methods in applied mechanics and engineering.

[3]  Tayfun E. Tezduyar,et al.  Space–time fluid mechanics computation of heart valve models , 2014 .

[4]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[5]  R. Glowinski,et al.  Distributed Lagrange multipliers based on fictitious domain method for second order elliptic problems , 2007 .

[6]  L. Fauci,et al.  A computational model of aquatic animal locomotion , 1988 .

[7]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[8]  Wing Kam Liu,et al.  Lagrangian-Eulerian finite element formulation for incompressible viscous flows☆ , 1981 .

[9]  Tayfun E. Tezduyar,et al.  PARALLEL COMPUTATION OF INCOMPRESSIBLE FLOWS WITH COMPLEX GEOMETRIES , 1997 .

[10]  C. Bona-Casas,et al.  A NURBS-based immersed methodology for fluid–structure interaction , 2015 .

[11]  Dino Di Carlo,et al.  Microstructure-induced helical vortices allow single-stream and long-term inertial focusing. , 2013, Lab on a chip.

[12]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[13]  R. Mittal,et al.  Interface tracking finite volume method for complex solid-fluid interactions on fixed meshes , 2001 .

[14]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[15]  Gianluca Iaccarino,et al.  IMMERSED BOUNDARY METHODS , 2005 .

[16]  I. Akkerman,et al.  Large eddy simulation of turbulent Taylor-Couette flow using isogeometric analysis and the residual-based variational multiscale method , 2010, J. Comput. Phys..

[17]  Robert Dillon,et al.  Modeling Biofilm Processes Using the Immersed Boundary Method , 1996 .

[18]  Lucy T. Zhang,et al.  On computational issues of immersed finite element methods , 2009, J. Comput. Phys..

[19]  T. Tezduyar,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests , 1992 .

[20]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[21]  Jos Derksen,et al.  Particle imaging velocimetry experiments and lattice-Boltzmann simulations on a single sphere settling under gravity , 2002 .

[22]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[23]  Tayfun E. Tezduyar,et al.  Finite element stabilization parameters computed from element matrices and vectors , 2000 .

[24]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[25]  D. Di Carlo Inertial microfluidics. , 2009, Lab on a chip.

[26]  C S Peskin,et al.  Computer-assisted design of butterfly bileaflet valves for the mitral position. , 1985, Scandinavian journal of thoracic and cardiovascular surgery.

[27]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[28]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[29]  G. Segré,et al.  Radial Particle Displacements in Poiseuille Flow of Suspensions , 1961, Nature.

[30]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[31]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[32]  R. Glowinski,et al.  A distributed Lagrange multiplier/fictitious domain method for particulate flows , 1999 .

[33]  J. P. Beyer A computational model of the cochlea using the immersed boundary method , 1992 .

[34]  Adarsh Krishnamurthy,et al.  Direct immersogeometric fluid flow analysis using B-rep CAD models , 2016, Comput. Aided Geom. Des..

[35]  Ming-Chen Hsu,et al.  The tetrahedral finite cell method for fluids: Immersogeometric analysis of turbulent flow around complex geometries , 2016 .

[36]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[37]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[38]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[39]  R. Glowinski,et al.  A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow , 2001 .

[40]  Wing Kam Liu,et al.  Mathematical foundations of the immersed finite element method , 2006 .

[41]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[42]  Kenji Takizawa,et al.  Space–time interface-tracking with topology change (ST-TC) , 2014 .

[43]  Tayfan E. Tezduyar,et al.  Stabilized Finite Element Formulations for Incompressible Flow Computations , 1991 .

[44]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[45]  Marco S. Pigazzini,et al.  Optimizing fluid–structure interaction systems with immersogeometric analysis and surrogate modeling: Application to a hydraulic arresting gear , 2017 .

[46]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[47]  Victor M. Calo,et al.  Improving stability of stabilized and multiscale formulations in flow simulations at small time steps , 2010 .

[48]  Adarsh Krishnamurthy,et al.  Rapid B-rep model preprocessing for immersogeometric analysis using analytic surfaces , 2017, Comput. Aided Geom. Des..

[49]  H. Amini,et al.  Inertial microfluidic physics. , 2014, Lab on a chip.

[50]  Lucy T. Zhang,et al.  Immersed finite element method , 2004 .

[51]  Tayfun E. Tezduyar,et al.  Advanced mesh generation and update methods for 3D flow simulations , 1999 .

[52]  Daniel D. Joseph,et al.  Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid. Part 2. Couette and Poiseuille flows , 1994, Journal of Fluid Mechanics.

[53]  John A. Evans,et al.  Immersogeometric cardiovascular fluid-structure interaction analysis with divergence-conforming B-splines. , 2017, Computer methods in applied mechanics and engineering.

[54]  T. E. TezduyarAerospace,et al.  3d Simulation of Fluid-particle Interactions with the Number of Particles Reaching 100 , 1996 .

[55]  S. Mittal,et al.  A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. II: Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders , 1992 .

[56]  Fehmi Cirak,et al.  Subdivision-stabilised immersed b-spline finite elements for moving boundary flows , 2012 .