Quantum double Schubert polynomials, quantum Schubert polynomials and Vafa-Intriligator formula
暂无分享,去创建一个
[1] David Eisenbud,et al. An Algebraic Formula for the Degree of a C ∞ Map Germ , 1977 .
[2] Bumsig Kim. Quantum cohomology of flag manifolds G/B and quantum Toda lattices , 1996 .
[3] Ionuct Ciocan-Fontanine. Quantum cohomology of flag varieties , 1995 .
[4] I. G. MacDonald,et al. Notes on Schubert polynomials , 1991 .
[5] William Fulton,et al. Flags, Schubert polynomials, degeneracy loci, and determinantal formulas , 1992 .
[6] Alexander Givental,et al. Quantum cohomology of flag manifolds and Toda lattices , 1993, hep-th/9312096.
[7] D. Salamon,et al. J-Holomorphic Curves and Quantum Cohomology , 1994 .
[8] Alain Lascoux,et al. Symmetry and flag manifolds , 1983 .
[9] Y. Ruan,et al. A mathematical theory of quantum cohomology , 1994 .
[10] Joe W. Harris,et al. Principles of Algebraic Geometry , 1978 .
[11] Nantel Bergeron,et al. RC-Graphs and Schubert Polynomials , 1993, Exp. Math..
[12] On equivariant quantum cohomology , 1995, q-alg/9509029.
[13] M. Kontsevich,et al. Gromov-Witten classes, quantum cohomology, and enumerative geometry , 1994 .
[14] Sergey Fomin,et al. Quantum Schubert polynomials , 1997 .
[15] Pieri's rule for flag manifolds and Schubert polynomials , 1995, alg-geom/9505001.
[16] Bumsig Kim. Quot schemes for flags and Gromov invariants for flag varieties , 1995, alg-geom/9512003.
[17] Richard P. Stanley,et al. Some Combinatorial Properties of Schubert Polynomials , 1993 .