Investigation of metallic nanowire-based localized surface plasmon resonance optical biosensors using extinction spectra

In this study, we investigate the impact of the cross sectional profile of an array of metallic nanowires on the feasibility of a localized surface plasmons resonance (LSPR) biosensor. Calculations were performed using rigorous coupled wave analysis with an emphasis on the extinction properties of the LSPR structure. It was confirmed that the resonance spectrum strongly depends on the nanowire period and profile. Our numerical results indicate that the nanowire structure, particularly that of a T-profile, delivers extremely linear sensing performance over a wide range of target refractive index with much enhanced sensitivity. The extinction-based LSPR structure also involves relatively large dimension and thus is expected to provide a feasible biosensor using current semiconductor technology.

[1]  C. Haynes,et al.  Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles , 2000 .

[2]  Adam D. McFarland,et al.  Single Silver Nanoparticles as Real-Time Optical Sensors with Zeptomole Sensitivity , 2003 .

[3]  I. Rubinstein,et al.  Differential plasmon spectroscopy as a tool for monitoring molecular binding to ultrathin gold films. , 2001, Journal of the American Chemical Society.

[4]  Jihoon Park,et al.  Role of Substrate Metal in Gold Nanoparticle Enhanced Surface Plasmon Resonance Imaging , 2001 .

[5]  Donghyun Kim,et al.  Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled wave analysis , 2005, SPIE BiOS.

[6]  David R. Smith,et al.  Plasmon resonances of silver nanowires with a nonregular cross section , 2001 .

[7]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[8]  David R. Smith,et al.  Local Refractive Index Dependence of Plasmon Resonance Spectra from Individual Nanoparticles , 2003 .

[9]  J. Lermé Introduction of quantum finite-size effects in the Mie's theory for a multilayered metal sphere in the dipolar approximation: Application to free and matrix-embedded noble metal clusters , 2000 .

[10]  Günter Gauglitz,et al.  Surface plasmon resonance sensors: review , 1999 .

[11]  B. Liedberg,et al.  Surface plasmon resonance for gas detection and biosensing , 1983 .

[12]  Christian Hafner,et al.  Multiple multipole method with automatic multipole setting applied to the simulation of surface plasmons in metallic nanostructures. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[13]  Vladimir M. Shalaev,et al.  Resonant Field Enhancements from Metal Nanoparticle Arrays , 2004 .

[14]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[15]  Keiichi Yamamoto,et al.  Interaction between localized and propagating surface plasmons: Ag fine particles on Al surface , 1995 .

[16]  C. Haynes,et al.  Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays † , 2003 .

[17]  Bernhard Lamprecht,et al.  Optical properties of two interacting gold nanoparticles , 2003 .

[18]  S. Kawata,et al.  Optical chemical sensor based on surface plasmon measurement. , 1988, Applied optics.

[19]  Bernhard Lamprecht,et al.  Design of multipolar plasmon excitations in silver nanoparticles , 2000 .

[20]  T Kobayashi,et al.  Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. , 2000, Optics letters.

[21]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[22]  Romain Quidant,et al.  Optical sensing based on plasmon coupling in nanoparticle arrays. , 2004, Optics express.

[23]  Paul Mulvaney,et al.  Surface Plasmon Spectroscopy of Nanosized Metal Particles , 1996 .

[24]  H. Raether Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .

[25]  Donghyun Kim,et al.  Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis. , 2005, Optics express.

[26]  T. Gaylord,et al.  Diffraction analysis of dielectric surface-relief gratings , 1982 .

[27]  Thomas K. Gaylord,et al.  Rigorous coupled-wave analysis of metallic surface-relief gratings , 1986 .

[28]  S. Brueck,et al.  A surface plasmon resonance array biosensor based on spectroscopic imaging. , 2001, Biosensors & bioelectronics.

[29]  Paul Mulvaney,et al.  Drastic reduction of plasmon damping in gold nanorods. , 2002 .

[30]  A. Requicha,et al.  Plasmonics—A Route to Nanoscale Optical Devices , 2001 .

[31]  Michael J. Natan,et al.  SURFACE PLASMON RESONANCE OF AU COLLOID-MODIFIED AU FILMS : PARTICLE SIZE DEPENDENCE , 1999 .

[32]  Lin He,et al.  Colloidal Au-Enhanced Surface Plasmon Resonance for Ultrasensitive Detection of DNA Hybridization , 2000 .

[33]  R. V. Van Duyne,et al.  A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. , 2002, Journal of the American Chemical Society.