Optical tweezers toolbox: better, faster, cheaper; choose all three

Numerical computation of optical tweezers is one path to understanding the subtleties of their underlying mechanism—electromagnetic scattering. Electromagnetic scattering models of optical trapping can be used to find the properties of the optical forces and torques acting on trapped particles. These kinds of calculations can assist in predicting the outcomes of particular trapping configurations. Experimentally, looking at the parameter space is time consuming and in most cases unfruitful. Theoretically, the same limitations exist but are easier to troubleshoot and manage. Towards this end a new more usable optical tweezers toolbox has been written. Understanding of the underlying theory has been improved, as well as the regimes of applicability of the methods available to the toolbox. Here we discus the physical principles and carry out numerical comparisons of performance of the old toolbox with the new one and the reduced (but portable) code.

[1]  H. Rubinsztein-Dunlop,et al.  Phase-transition-like properties of double-beam optical tweezers. , 2011, Physical review letters.

[2]  Gérard Gouesbet,et al.  Generalized Lorenz-Mie theories, the third decade: A perspective , 2009 .

[3]  Mark S. Gordon,et al.  Rapid and stable determination of rotation matrices between spherical harmonics by direct recursion , 1999 .

[4]  James H. Crichton,et al.  THE MEASURABLE DISTINCTION BETWEEN THE SPIN AND ORBITAL ANGULAR MOMENTA OF ELECTROMAGNETIC RADIATION , 2000 .

[5]  T. Nieminen,et al.  Dual-beam interferometric laser trapping of Rayleigh and mesoscopic particles , 2008 .

[6]  Giancarlo Ruocco,et al.  Computer generation of optimal holograms for optical trap arrays. , 2007, Optics express.

[7]  W. P. Bowen,et al.  Sagnac interferometer-enhanced particle tracking in optical tweezers , 2010, 1006.0777.

[8]  G. Mie Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen , 1908 .

[9]  D B Phillips,et al.  Download details: IP Address: 137.222.59.47 , 2011 .

[10]  P. A. Maia Neto,et al.  Theory of trapping forces in optical tweezers , 2003, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  D. Grier,et al.  Brownian vortexes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Anita Jannasch,et al.  Measuring the complete force field of an optical trap. , 2011, Optics letters.

[13]  B. U. Felderhof,et al.  Force, torque, and absorbed energy for a body of arbitrary shape and constitution in an electromagnetic radiation field , 1996 .

[14]  Jonathan Leach,et al.  Independent polarisation control of multiple optical traps. , 2008, Optics express.

[15]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[16]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[17]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[18]  Halina Rubinsztein-Dunlop,et al.  Equilibrium orientations and positions of non-spherical particles in optical traps. , 2012, Optics express.

[19]  H. Rubinsztein-Dunlop,et al.  Multipole Expansion of Strongly Focussed Laser Beams , 2003 .

[20]  Carlos Bustamante,et al.  Differential detection of dual traps improves the spatial resolution of optical tweezers. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Michael I. Mishchenko,et al.  Light scattering by randomly oriented axially symmetric particles , 1991 .

[22]  O. Axner,et al.  Design for fully steerable dual-trap optical tweezers. , 1997, Applied optics.

[23]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .