Analytical model of internally coupled ears.

Lizards and many birds possess a specialized hearing mechanism: internally coupled ears where the tympanic membranes connect through a large mouth cavity so that the vibrations of the tympanic membranes influence each other. This coupling enhances the phase differences and creates amplitude differences in the tympanic membrane vibrations. Both cues show strong directionality. The work presented herein sets out the derivation of a three dimensional analytical model of internally coupled ears that allows for calculation of a complete vibration profile of the membranes. The analytical model additionally provides the opportunity to incorporate the effect of the asymmetrically attached columella, which leads to the activation of higher membrane vibration modes. Incorporating this effect, the analytical model can explain measurements taken from the tympanic membrane of a living lizard, for example, data demonstrating an asymmetrical spatial pattern of membrane vibration. As the analytical calculations show, the internally coupled ears increase the directional response, appearing in large directional internal amplitude differences (iAD) and in large internal time differences (iTD). Numerical simulations of the eigenfunctions in an exemplary, realistically reconstructed mouth cavity further estimate the effects of its complex geometry.

[1]  D. B. Lewis,et al.  Directional Hearing in the Japanese Quail (Coturnix Coturnix Japonica): I. Acoustic Properties of the Auditory System , 1980 .

[2]  A. Michelsen The physiology of the locust ear , 1971, Zeitschrift für vergleichende Physiologie.

[3]  P. Morse Vibration and Sound , 1949, Nature.

[4]  Robert R. Capranica,et al.  Representation of acoustic signals in the eighth nerve of the Tokay gecko: I. Pure tones , 1994, Hearing Research.

[5]  E. T. Copson,et al.  An introduction to the theory of functions of a complex variable , 1950 .

[6]  N. Fletcher,et al.  Acoustic systems in biology , 1992 .

[7]  G. Manley The middle ear of the Tokay Gecko , 1972, Journal of comparative physiology.

[8]  Albert S. Feng,et al.  Peripheral basis of sound localization in anurans. Acoustic properties of the frog's ear , 1981, Hearing Research.

[9]  Jakob Christensen-Dalsgaard,et al.  Biophysics of directional hearing in the frog Eleutherodactylus coqui , 1991, Journal of Comparative Physiology A.

[10]  G. Manley,et al.  Directionality of the lizard ear , 2005, Journal of Experimental Biology.

[11]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[12]  R. B. Coles,et al.  Directional hearing in the barn owl (Tyto alba) , 1988, Journal of Comparative Physiology A.

[13]  Jakob Christensen-Dalsgaard,et al.  Evolution of a sensory novelty: Tympanic ears and the associated neural processing , 2008, Brain Research Bulletin.

[14]  Jakob Christensen-Dalsgaard,et al.  Acoustical Coupling of Lizard Eardrums , 2008, Journal of the Association for Research in Otolaryngology.

[15]  Gerhard Rigoll,et al.  3D Face Scanning Systems Based on Invisible Infrared Coded Light , 2007, ISVC.

[16]  H. Autrum ber Lautusserungen und Schallwahrnehmung bei Arthropoden II: Das Richtungshren von Locusta und Versuch einer Hrtheorie fr Tympanalorgane vom Locustidentyp , 1940 .

[17]  Michael Anson,et al.  Dynamics of the amphibian middle ear , 1978, Nature.