Thin-shell toroidal wormhole

We consider a topologically nontrivial thin-shell wormhole with a throat in the form of a $T^2$ torus. It is shown that: (i)~such a wormhole is stable with respect to excitations of the throat; (ii)~not all energy conditions are violated for such wormholes; (iii)~if any of the energy conditions is violated, this violation occurs only partially in some region near the throat, and in other regions the violation is absent. Also, we discuss the differences between spherical $S^2$ wormholes and toroidal $T^2$ wormholes under investigation.

[1]  M. Heidrich Wormholes , 2021, Black Holes, Cosmology and Extra Dimensions.

[2]  L. Susskind,et al.  Teleportation through the wormhole , 2017, Physical Review D.

[3]  F. Lobo Wormholes, Warp Drives and Energy Conditions , 2017 .

[4]  C. Bambi,et al.  Wormholes and nonsingular spacetimes in Palatini f (R ) gravity , 2015, 1511.03755.

[5]  R. Shaikh Lorentzian wormholes in Eddington-inspired Born-Infeld gravity , 2015, 1505.01314.

[6]  V. Dzhunushaliev,et al.  Boson stars with nontrivial topology , 2014, 1409.6978.

[7]  K. Bronnikov,et al.  Example of a stable wormhole in general relativity , 2013, 1312.6929.

[8]  A. Karch,et al.  Holographic dual of an Einstein-Podolsky-Rosen pair has a wormhole. , 2013, Physical review letters.

[9]  H. Shinkai,et al.  Wormholes in higher dimensional space-time: Exact solutions and their linear stability analysis , 2013, 1309.2058.

[10]  L. Susskind,et al.  Cool horizons for entangled black holes , 2013, 1306.0533.

[11]  T. Harko,et al.  Modified-gravity wormholes without exotic matter , 2013, 1301.6878.

[12]  M. Jamil,et al.  Wormholes in a viable f(T) gravity , 2012, 1212.6017.

[13]  K. Bronnikov,et al.  Instabilities of wormholes and regular black holes supported by a phantom scalar field , 2012, 1205.2224.

[14]  P. Kanti,et al.  Stable Lorentzian Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory , 2011, 1111.4049.

[15]  A. DeBenedictis,et al.  On wormhole throats in f (R) gravity theory , 2011, 1111.3704.

[16]  K. Bronnikov,et al.  On the stability of scalar-vacuum space-times , 2011, 1109.6576.

[17]  P. Kanti,et al.  Wormholes in dilatonic Einstein-Gauss-Bonnet theory. , 2011, Physical review letters.

[18]  P. Kuhfittig Some remarks on exact wormhole solutions , 2010, 1001.0381.

[19]  F. Lobo,et al.  Wormhole geometries in f(R) modified theories of gravity , 2009, 0909.5539.

[20]  O. Sarbach,et al.  Instability of wormholes supported by a ghost scalar field: II. Nonlinear evolution , 2008, 0806.1370.

[21]  O. Sarbach,et al.  Instability of wormholes supported by a ghost scalar field: I. Linear stability analysis , 2008, 0806.0608.

[22]  F. Lobo Phantom energy traversable wormholes , 2005, gr-qc/0502099.

[23]  S. Sushkov Wormholes supported by a phantom energy , 2005, gr-qc/0502084.

[24]  S. Sushkov,et al.  Wormholes supported by a kink-like configuration of a scalar field , 2002, gr-qc/0208069.

[25]  H. Shinkai,et al.  Fate of the first traversible wormhole : black-hole collapse or inflationary expansion , 2002, gr-qc/0205041.

[26]  C. Armendariz-Picon,et al.  On a class of stable, traversable Lorentzian wormholes in classical general relativity , 2002, gr-qc/0201027.

[27]  Li-Xin Li Two open universes connected by a wormhole: exact solutions , 2001, hep-th/0102143.

[28]  González-Díaz Ringholes and closed timelike curves. , 1996, Physical review. D, Particles and fields.

[29]  Thorne,et al.  Wormholes, time machines, and the weak energy condition. , 1988, Physical review letters.

[30]  K. Thorne,et al.  Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity , 1988 .

[31]  T. Kodama,et al.  Properties of a general-relativistic kink solution , 1979 .

[32]  T. Kodama General Relativistic Nonlinear Field: A Kink Solution in a Generalized Geometry , 1978 .

[33]  M. Kruskal,et al.  Maximal extension of Schwarzschild metric , 1960 .

[34]  J. Wheeler,et al.  Classical physics as geometry , 1957 .

[35]  Albert Einstein,et al.  The Particle Problem in the General Theory of Relativity , 1935 .

[36]  Matt Visser,et al.  Lorentzian Wormholes: From Einstein to Hawking , 1995 .

[37]  H. G. Ellis Ether flow through a drainhole - a particle model in general relativity , 1973 .