Ray shooting in polygons using geodesic triangulations

LetP be a simple polygon withn vertices. We present a simple decomposition scheme that partitions the interior ofP intoO(n) so-called geodesic triangles, so that any line segment interior toP crosses at most 2 logn of these triangles. This decomposition can be used to preprocessP in a very simple manner, so that any ray-shooting query can be answered in timeO(logn). The data structure requiresO(n) storage andO(n logn) preprocessing time. By using more sophisticated techniques, we can reduce the preprocessing time toO(n). We also extend our general technique to the case of ray shooting amidstk polygonal obstacles with a total ofn edges, so that a query can be answered inO(√ logn) time.

[1]  Prof. Dr. Kurt Mehlhorn,et al.  Data Structures and Algorithms 1 , 1984, EATCS.

[2]  Bernard Chazelle,et al.  A theorem on polygon cutting with applications , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[3]  David G. Kirkpatrick,et al.  Fast Detection of Polyhedral Intersection , 1983, Theor. Comput. Sci..

[4]  Pankaj K. Agarwal,et al.  Ray shooting and other applications of spanning trees with low stabbing number , 1992, SCG '89.

[5]  Leonidas J. Guibas,et al.  Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons , 1987, Algorithmica.

[6]  John Hershberger,et al.  A New Data Structure for Shortest Path Queries in a Simple Polygon , 1991, Inf. Process. Lett..

[7]  Leonidas J. Guibas,et al.  Visibility and intersection problems in plane geometry , 1989, Discret. Comput. Geom..

[8]  Leonidas J. Guibas,et al.  Optimal Point Location in a Monotone Subdivision , 1986, SIAM J. Comput..

[9]  D. T. Lee,et al.  Euclidean shortest paths in the presence of rectilinear barriers , 1984, Networks.

[10]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[11]  Leonidas J. Guibas,et al.  Compact interval trees: a data structure for convex hulls , 1991, SODA '90.

[12]  Alfred V. Aho,et al.  Data Structures and Algorithms , 1983 .

[13]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 1: Sorting and Searching , 2011, EATCS Monographs on Theoretical Computer Science.

[14]  Günter Ewald,et al.  Geometry: an introduction , 1971 .

[15]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[16]  Uzi Vishkin,et al.  On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.

[17]  Leonidas J. Guibas,et al.  Fractional cascading: II. Applications , 1986, Algorithmica.

[18]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[19]  Leonidas J. Guibas,et al.  The complexity of cutting complexes , 1989, Discret. Comput. Geom..

[20]  Leonidas J. Guibas,et al.  Fractional cascading: I. A data structuring technique , 1986, Algorithmica.

[21]  Leonidas J. Guibas,et al.  Optimal Shortest Path Queries in a Simple Polygon , 1989, J. Comput. Syst. Sci..

[22]  Bernard Chazelle Triangulating a simple polygon in linear time , 1991, Discret. Comput. Geom..

[23]  David Avis,et al.  A Linear Algorithm for Computing the Visibility Polygon from a Point , 1981, J. Algorithms.

[24]  Jan van Leeuwen,et al.  Maintenance of Configurations in the Plane , 1981, J. Comput. Syst. Sci..