Semiparametric Cointegrating Rank Selection

Some convenient limit properties of usual information criteria are given for cointegrating rank selection. Allowing for a nonparametric short memory component and using a reduced rank regression with only a single lag, standard information criteria are shown to be weakly consistent in the choice of cointegrating rank provided the penalty coefficient C_n -> infinity and C_n/n -> 0 as n -> infinity. The limit distribution of the AIC criterion, which is inconsistent, is also obtained. The analysis provides a general limit theory for semiparametric reduced rank regression under weakly dependent errors. The method does not require the specification of a full model, is convenient for practical implementation in empirical work, and is sympathetic with semiparametric estimation approaches to cointegration analysis. Some simulations results on finite sample performance of the criterion are reported.

[1]  C. Z. Wei On Predictive Least Squares Principles , 1992 .

[2]  Forward exchange market unbiasedness: the case of the Australian dollar since 1984 , 1997 .

[3]  S. Johansen STATISTICAL ANALYSIS OF COINTEGRATION VECTORS , 1988 .

[4]  Peter C. B. Phillips,et al.  Fully Modified Least Squares and Vector Autoregression , 1993 .

[5]  B. Nielsen Order determination in general vector autoregressions , 2001, math/0702779.

[6]  B. G. Quinn,et al.  The determination of the order of an autoregression , 1979 .

[7]  Peter C. B. Phillips,et al.  An Asymptotic Theory of Bayesian Inference for Time Series , 1996 .

[8]  P. Phillips Unit Root Model Selection , 2008 .

[9]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[10]  Peter C. B. Phillips,et al.  Econometric Model Determination , 1996 .

[11]  G. Kapetanios THE ASYMPTOTIC DISTRIBUTION OF THE COINTEGRATION RANK ESTIMATOR UNDER THE AKAIKE INFORMATION CRITERION , 2004, Econometric Theory.

[12]  J. Ware,et al.  Applications of Statistics , 1978 .

[13]  John C. Chao,et al.  Model selection in partially nonstationary vector autoregressive processes with reduced rank structure , 1999 .

[14]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[15]  Giuseppe Cavaliere,et al.  Unit Root Tests under Time-Varying Variances , 2005 .

[16]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[17]  David A. Bessler,et al.  A MONTE CARLO STUDY ON THE SELECTION OF COINTEGRATING RANK USING INFORMATION CRITERIA , 2005, Econometric Theory.

[18]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[19]  Felix Schlenk,et al.  Proof of Theorem 3 , 2005 .

[20]  Peter C. B. Phillips,et al.  Optimal Inference in Cointegrated Systems , 1991 .

[21]  Victor Solo,et al.  Asymptotics for Linear Processes , 1992 .

[22]  B. M. Potscher Model Selection Under Nonstationarity: Autoregressive Models and Stochastic Linear Regression Models , 1989 .

[23]  Ruey S. Tsay,et al.  Order Selection in Nonstationary Autoregressive Models , 1984 .

[24]  A. M. Robert Taylor,et al.  Testing for unit roots in time series models with non-stationary volatility , 2007 .

[25]  Peter C. B. Phillips,et al.  Challenges of Trending Time Series Econometrics , 2004, Math. Comput. Simul..

[26]  Xu Cheng,et al.  Cointegrating Rank Selection in Models with Time-Varying Variance , 2008 .

[27]  Peter C. B. Phillips,et al.  New Tools for Understanding Spurious Regressions , 1998 .

[28]  J. Bai,et al.  A Panic Attack on Unit Roots and Cointegration , 2001 .