Negacyclic codes over Galois rings of characteristic 2~a

We investigate negacyclic codes over the Galois ring GR(2 a ,m) of length N = 2 k n, where n is odd and k ⩾ 0. We first determine the structure of u-constacyclic codes of length n over the finite chain ring $GR(2^a ,m)[u]/\langle u^{2^k } + 1\rangle $ . Then using a ring isomorphism we obtain the structure of negacyclic codes over GR(2 a ,m) of length N = 2 k n (n odd) and explore the existence of self-dual negacyclic codes over GR(2 a ,m). A bound for the homogeneous distance of such negacyclic codes is also given.

[1]  Patrick Solé,et al.  On the algebraic structure of quasi-cyclic codes I: Finite fields , 2001, IEEE Trans. Inf. Theory.

[2]  H. Q. Dinh,et al.  Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.

[3]  Elwyn R. Berlekamp Negacyclic codes for the Lee metric , 1966 .

[4]  Marcus Greferath,et al.  Gray isometries for finite chain rings and a nonlinear ternary (36, 312, 15) code , 1999, IEEE Trans. Inf. Theory.

[5]  Zhe-Xian X. Wan,et al.  Quaternary Codes , 1997 .

[6]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[7]  Jacques Wolfmann Binary Images of Cyclic codes over I4 , 2001, Electron. Notes Discret. Math..

[8]  Marcus Greferath,et al.  Finite-Ring Combinatorics and MacWilliams' Equivalence Theorem , 2000, J. Comb. Theory A.

[9]  Ana Slgean Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006 .

[10]  Shixin Zhu,et al.  Dual and self-dual negacyclic codes of even length over Z2a , 2009, Discret. Math..

[11]  Ana Salagean,et al.  Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..

[12]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[13]  Jay A. Wood Duality for modules over finite rings and applications to coding theory , 1999 .

[14]  J. Wolfman Negacyclic and cyclic codes over Z/sub 4/ , 1999 .

[15]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[16]  Jacques Wolfmann Binary images of cyclic codes over Z4 , 2001, IEEE Trans. Inf. Theory.

[17]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[18]  Marcus Greferath,et al.  On bounds for codes over Frobenius rings under homogeneous weights , 2004, Discret. Math..

[19]  H. Q. Dinh,et al.  Complete Distances of All Negacyclic Codes of Length $2^{s}$ Over $\BBZ _{2^{a}}$ , 2007, IEEE Transactions on Information Theory.

[20]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[21]  B. R. McDonald Finite Rings With Identity , 1974 .

[22]  Patrick Solé,et al.  Bounds on the Minimum Homogeneous Distance of the ${p^{r}}$-ary Image of Linear Block Codes Over the Galois Ring ${\hbox{GR}}(p^{r},m)$ , 2007, IEEE Transactions on Information Theory.

[23]  Hongwei Liu,et al.  Constructions of self-dual codes over finite commutative chain rings , 2010, Int. J. Inf. Coding Theory.