- and Perovskite-Sensitised Mesoscopic Solar Cells

[1]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[2]  S. Uchida,et al.  Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer , 2013, Nature Photonics.

[3]  Peng Gao,et al.  Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. , 2012, Journal of the American Chemical Society.

[4]  Edward H. Sargent,et al.  Materials interface engineering for solution-processed photovoltaics , 2012, Nature.

[5]  Yuancheng Qin,et al.  Ruthenium Sensitizers and Their Applications in Dye-Sensitized Solar Cells , 2012 .

[6]  Michael Grätzel,et al.  Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency , 2011, Science.

[7]  Hans Desilvestro,et al.  Long-term stability of dye solar cells , 2011 .

[8]  James R. Durrant,et al.  Electron Transfer Dynamics in Dye-Sensitized Solar Cells , 2011 .

[9]  Carl C. Wamser,et al.  Porphyrins and phthalocyanines in solar photovoltaic cells , 2010 .

[10]  Anders Hagfeldt,et al.  Dye-sensitized solar cells. , 2010, Chemical reviews.

[11]  David Casanova,et al.  Computational Study of Promising Organic Dyes for High-Performance Sensitized Solar Cells , 2010 .

[12]  E. Diau,et al.  Synthesis and characterization of porphyrin sensitizers with various electron-donating substituents for highly efficient dye-sensitized solar cells , 2010 .

[13]  J. Durrant,et al.  Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. , 2009, Accounts of chemical research.

[14]  Laurence Peter,et al.  "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell. , 2009, Accounts of chemical research.

[15]  Michael Grätzel,et al.  Fabrication and performance of a monolithic dye-sensitized TiO2/Cu(In,Ga)Se2 thin film tandem solar cell , 2009 .

[16]  Seigo Ito,et al.  Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. , 2009, Accounts of chemical research.

[17]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[18]  M. Fischer,et al.  Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. , 2009, Angewandte Chemie.

[19]  Hidetoshi Miura,et al.  High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye. , 2008, Chemical communications.

[20]  Environmental life cycle analysis of dye sensitized solar devices status and outlook , 2007 .

[21]  S. Haque,et al.  Photochemical energy conversion: from molecular dyads to solar cells. , 2006, Chemical communications.

[22]  Michael Dürr,et al.  Low-temperature fabrication of dye-sensitized solar cells by transfer of composite porous layers , 2005, Nature materials.

[23]  T. Lian,et al.  Ultrafast electron transfer at the molecule-semiconductor nanoparticle interface. , 2005, Annual review of physical chemistry.

[24]  Juan Bisquert,et al.  Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy , 2005 .

[25]  Peng Wang,et al.  Stable ⩾8% efficient nanocrystalline dye-sensitized solar cell based on an electrolyte of low volatility , 2005 .

[26]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[27]  A. J. Frank,et al.  Electrons in nanostructured TiO2 solar cells: Transport, recombination and photovoltaic properties , 2004 .

[28]  Michael Dürr,et al.  Tandem dye-sensitized solar cell for improved power conversion efficiencies , 2004 .

[29]  R. Schaller,et al.  High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. , 2004, Physical review letters.

[30]  Peng Wang,et al.  Molecular‐Scale Interface Engineering of TiO2 Nanocrystals: Improve the Efficiency and Stability of Dye‐Sensitized Solar Cells , 2003 .

[31]  Udo Bach,et al.  Quantum dot sensitization of organic-inorganic hybrid solar cells , 2002 .

[32]  A. Alivisatos,et al.  Hybrid Nanorod-Polymer Solar Cells , 2002, Science.

[33]  Juan Bisquert,et al.  Theory of the Impedance of Electron Diffusion and Recombination in a Thin Layer , 2002 .

[34]  Andreas F. Meyer,et al.  Long‐term stability of dye‐sensitised solar cells , 2001 .

[35]  L. Kavan,et al.  Orientation Dependence of Charge‐Transfer Processes on TiO2 (Anatase) Single Crystals , 2000 .

[36]  David B. Mitzi,et al.  Electroluminescence from an Organic−Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers , 1999 .

[37]  Hironori Arakawa,et al.  Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye , 1998 .

[38]  Annabella Selloni,et al.  Structure and Energetics of Water Adsorbed at TiO2 Anatase (101) and (001) Surfaces , 1998 .

[39]  Valery Shklover,et al.  Structure of Organic/Inorganic Interface in Assembled Materials Comprising Molecular Components. Crystal Structure of the Sensitizer Bis[(4,4‘-carboxy-2,2‘-bipyridine)(thiocyanato)]ruthenium(II) , 1998 .

[40]  A. Zaban,et al.  Relative Energetics at the Semiconductor/Sensitizing Dye/Electrolyte Interface , 1998 .

[41]  M. Graetzel,et al.  Integrated systems for water cleavage by visible light; sensitization of titanium dioxide particles by surface derivatization with ruthenium complexes , 1984 .

[42]  R. D. Wright,et al.  Chemical modification of a titanium (IV) oxide electrode to give stable dye sensitisation without a supersensitiser , 1979, Nature.

[43]  M. Matsumura,et al.  Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell , 1976, Nature.

[44]  S. Namba,et al.  Color Sensitization of Zinc Oxide with Cyanine Dyes1 , 1965 .

[45]  C. K. Møller Crystal Structure and Photoconductivity of Cæsium Plumbohalides , 1958 .