Shrinking point bifurcations of resonance tongues for piecewise-smooth, continuous maps

Resonance tongues are mode-locking regions of parameter space in which stable periodic solutions occur; they commonly occur, for example, near Neimark–Sacker bifurcations. For piecewise-smooth, continuous maps these tongues typically have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation diagrams. We give a symbolic description of a class of 'rotational' periodic solutions that display lens-chain structures for a general N-dimensional map. We then unfold the codimension-two, shrinking point bifurcation, where the tongues have zero width. A number of codimension-one bifurcation curves emanate from shrinking points and we determine those that form tongue boundaries.

[1]  Mario di Bernardo,et al.  Corner-Impact Bifurcations: A Novel Class of Discontinuity-Induced Bifurcations in Cam-Follower Systems , 2007, SIAM J. Appl. Dyn. Syst..

[2]  Celso Grebogi,et al.  Border collision bifurcations in two-dimensional piecewise smooth maps , 1998, chao-dyn/9808016.

[3]  George C. Verghese,et al.  Nonlinear Phenomena in Power Electronics , 2001 .

[4]  Erik Mosekilde,et al.  Bifurcations and chaos in piecewise-smooth dynamical systems , 2003 .

[5]  Alan R. Champneys,et al.  Corner collision implies border-collision bifurcation , 2001 .

[6]  Mario di Bernardo,et al.  Piecewise smooth dynamical systems , 2008, Scholarpedia.

[7]  Hsin-Mei Chang,et al.  Piecewise Two-Dimensional Maps and Applications to Cellular Neural Networks , 2004, Int. J. Bifurc. Chaos.

[8]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[9]  Piotr Kowalczyk,et al.  Robust chaos and border-collision bifurcations in non-invertible piecewise-linear maps , 2005 .

[10]  Laura Gardini,et al.  Center bifurcation for Two-Dimensional Border-Collision Normal Form , 2008, Int. J. Bifurc. Chaos.

[11]  H. Nijmeijer,et al.  Dynamics and Bifurcations ofNon - Smooth Mechanical Systems , 2006 .

[12]  Somnath Maity,et al.  Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation. , 2006, Chaos.

[13]  Laura Gardini,et al.  Center Bifurcation for a Two-Dimensional Piecewise Linear Map , 2006 .

[14]  Bailin Hao,et al.  How the Arnold Tongues Become Sausages in a Piecewise Linear Circle Map , 1987 .

[15]  B. Hao,et al.  Applied Symbolic Dynamics and Chaos , 1998 .

[16]  Erik Mosekilde,et al.  Equilibrium-torus bifurcation in nonsmooth systems , 2008 .

[17]  M. Lothaire Applied Combinatorics on Words (Encyclopedia of Mathematics and its Applications) , 2005 .

[18]  Chi K. Tse,et al.  Complex behavior in switching power converters , 2002, Proc. IEEE.

[19]  Laura Gardini,et al.  Tongues of periodicity in a family of two-dimensional discontinuous maps of real Möbius type , 2003 .

[20]  Erik Mosekilde,et al.  Border-collision bifurcations in a dynamic management game , 2006, Comput. Oper. Res..

[21]  David J. W. Simpson,et al.  Bifurcations in Piecewise-Smooth Continuous Systems , 2010 .

[22]  James D. Meiss,et al.  Neimark-Sacker Bifurcations in Planar, Piecewise-Smooth, Continuous Maps , 2008, SIAM J. Appl. Dyn. Syst..

[23]  Erik Mosekilde,et al.  Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems: Applications to Power Converters, Relay and Pulse-Width Modulated Control Systems, and Human Decision-Making Behavior , 2003 .

[24]  Joseph A. Gallian,et al.  Contemporary Abstract Algebra , 2021 .

[25]  M. di Bernardo,et al.  Bifurcations of dynamical systems with sliding: derivation of normal-form mappings , 2002 .

[26]  Tönu Puu,et al.  Business Cycle Dynamics : Models and Tools , 2006 .

[27]  R Szalai,et al.  Invariant polygons in systems with grazing-sliding. , 2008, Chaos.

[28]  Iryna Sushko,et al.  Business Cycle Dynamics , 2006 .

[29]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[30]  Stephen John Hogan,et al.  Local Analysis of C-bifurcations in n-dimensional piecewise smooth dynamical systems , 1999 .