Homological techniques for the analysis of the dimension of triangular spline spaces

The spline space C"k^r(@D) attached to a subdivided domain @D of R^d is the vector space of functions of class C^r which are polynomials of degree ==4r+1, and the same method we use in this proof yields the dimension straightaway for many other cases.

[1]  Jernej Kozak,et al.  On the Dimension of Bivariate Spline Space S31(Δ) , 2005 .

[2]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[3]  Anthony V. Geramita,et al.  Fat Points, Inverse Systems, and Piecewise Polynomial Functions , 1998 .

[4]  Hal Schenck,et al.  A Spectral Sequence for Splines , 1997 .

[5]  Larry L. Schumaker,et al.  On the dimension of bivariate spline spaces of smoothnessr and degreed=3r+1 , 1990 .

[6]  Lauren L. Rose,et al.  A dimension series for multivariate splines , 1991, Discret. Comput. Geom..

[7]  H. Schenck,et al.  Local cohomology of bivariate splines , 1997 .

[8]  Michael Stillman,et al.  Local cohomology of bivariate splines , 1997 .

[9]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[10]  Hong Dong,et al.  Spaces of bivariate spline functions over triangulation , 1991 .

[11]  G. B. M. Zerr,et al.  Algebra: 117-118 , 1900 .

[12]  L. Billera Homology of smooth splines: generic triangulations and a conjecture of Strang , 1988 .

[13]  G. Strang,et al.  Fourier Analysis of the Finite Element Method in Ritz-Galerkin Theory , 1969 .

[14]  Hal Schenck,et al.  A Family of Ideals of Minimal Regularity and the Hilbert Series ofC r (Δ) , 1997 .

[15]  Larry L. Schumaker,et al.  The dimension of bivariate spline spaces of smoothnessr for degreed≥4r+1 , 1987 .

[16]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[17]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[18]  Larry L. Schumaker,et al.  Bounds on the dimension of spaces of multivariate piecewise polynomials , 1984 .

[19]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.