Fabrication of multiple nanopores in a SiNx membrane via controlled breakdown

[1]  A. Meller,et al.  Real-time visualization and sub-diffraction limit localization of nanometer-scale pore formation by dielectric breakdown. , 2017, Nanoscale.

[2]  Yapu Zhao,et al.  Characterization of pore structure, gas adsorption, and spontaneous imbibition in shale gas reservoirs , 2017 .

[3]  J. Korlach,et al.  Length-Independent DNA Packing into Nanopore Zero-Mode Waveguides for Low-Input DNA Sequencing , 2017, Nature nanotechnology.

[4]  Kyle Briggs,et al.  Solid-state nanopore localization by controlled breakdown of selectively thinned membranes , 2017, Nanotechnology.

[5]  David Sept,et al.  Real-time shape approximation and fingerprinting of single proteins using a nanopore. , 2015, Nature nanotechnology.

[6]  L. A. Baker,et al.  Nanopore Sensing. , 2017, Analytical chemistry.

[7]  A. Meller,et al.  Single-Molecule DNA Methylation Quantification Using Electro-optical Sensing in Solid-State Nanopores. , 2016, ACS nano.

[8]  Yunfei Chen,et al.  A Scattering Nanopore for Single Nanoentity Sensing , 2016 .

[9]  B. Charlot,et al.  Influence of Adsorption on Proteins and Amyloid Detection by Silicon Nitride Nanopore. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[10]  Wen-Yuan Zhou,et al.  3D nanopore shape control by current-stimulus dielectric breakdown , 2016 .

[11]  Itaru Yanagi,et al.  Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction , 2016, Scientific Reports.

[12]  Aaron T. Kuan,et al.  Ion selectivity of graphene nanopores , 2016, Nature Communications.

[13]  Wei Pang,et al.  Fabrications, Applications and Challenges of Solid-State Nanopores: A Mini Review , 2016 .

[14]  Samuel Bernard,et al.  A Review on the Preparation of Borazine-Derived Boron Nitride Nanoparticles and Nanopolyhedrons by Spray-Pyrolysis and Annealing Process , 2016 .

[15]  Itaru Yanagi,et al.  Prevention of Dielectric Breakdown of Nanopore Membranes by Charge Neutralization , 2015, Scientific Reports.

[16]  Cees Dekker,et al.  Self-Aligned Plasmonic Nanopores by Optically Controlled Dielectric Breakdown. , 2015, Nano letters.

[17]  Oliver K Castell,et al.  High-throughput optical sensing of nucleic acids in a nanopore array , 2015, Nature nanotechnology.

[18]  A. Meller,et al.  Optical sensing and analyte manipulation in solid-state nanopores. , 2015, The Analyst.

[19]  A. Meller,et al.  Nanopore sensing of individual transcription factors bound to DNA , 2015, Scientific Reports.

[20]  M. Toimil-Molares,et al.  Pores with longitudinal irregularities distinguish objects by shape. , 2015, ACS nano.

[21]  Sanmeet S. Chahal,et al.  Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution , 2015, Nanotechnology.

[22]  C. Dekker,et al.  Data analysis methods for solid-state nanopores , 2015, Nanotechnology.

[23]  William H. Pitchford,et al.  Synchronized optical and electronic detection of biomolecules using a low noise nanopore platform. , 2015, ACS nano.

[24]  Chunlei Du,et al.  Nanopore-based Fourth-generation DNA Sequencing Technology , 2015, Genom. Proteom. Bioinform..

[25]  A. Meller,et al.  Two Color DNA Barcode Detection in Photoluminescence Suppressed Silicon Nitride Nanopores , 2014, Nano letters.

[26]  Michel Godin,et al.  Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown. , 2015, Lab on a chip.

[27]  K. Briggs,et al.  Long Passage Times of Short ssDNA Molecules through Metallized Nanopores Fabricated by Controlled Breakdown , 2014 .

[28]  C. Dekker,et al.  DNA Translocations through Solid-State Plasmonic Nanopores , 2014, Nano letters.

[29]  S. Turner,et al.  Reversible Positioning of Single Molecules inside Zero-Mode Waveguides , 2014, Nano letters.

[30]  Yi-Lun Ying,et al.  Single molecule analysis by biological nanopore sensors. , 2014, The Analyst.

[31]  Furat Sawafta,et al.  Solid-state nanopores and nanopore arrays optimized for optical detection. , 2014, Nanoscale.

[32]  Rena Akahori,et al.  Fabricating nanopores with diameters of sub-1 nm to 3 nm using multilevel pulse-voltage injection , 2014, Scientific Reports.

[33]  Kyle Briggs,et al.  Automated fabrication of 2-nm solid-state nanopores for nucleic acid analysis. , 2014, Small.

[34]  K. Briggs,et al.  Nanopore Fabrication by Controlled Dielectric Breakdown , 2013, PloS one.

[35]  Joshua B Edel,et al.  Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. , 2013, Chemical Society reviews.

[36]  J. Betton,et al.  Sensing proteins through nanopores: fundamental to applications. , 2012, ACS chemical biology.

[37]  R. Daniel,et al.  Single molecule detection of glycosaminoglycan hyaluronic acid oligosaccharides and depolymerization enzyme activity using a protein nanopore. , 2012, ACS nano.

[38]  M. Wanunu Nanopores: A journey towards DNA sequencing. , 2012, Physics of life reviews.

[39]  A. Radenović,et al.  Nanopore detection of single molecule RNAP-DNA transcription complex. , 2012, Nano letters.

[40]  Amir G. Ahmadi,et al.  Polymer translocation in solid-state nanopores: dependence of scaling behavior on pore dimensions and applied voltage. , 2012, The Journal of chemical physics.

[41]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[42]  Cees Dekker,et al.  Modeling the conductance and DNA blockade of solid-state nanopores , 2011, Nanotechnology.

[43]  Sheereen Majd,et al.  Controlling protein translocation through nanopores with bio-inspired fluid walls , 2011 .

[44]  Jiwook Shim,et al.  Single molecule sensing by nanopores and nanopore devices. , 2010, The Analyst.

[45]  D. Talaga,et al.  Single-molecule protein unfolding in solid state nanopores. , 2009, Journal of the American Chemical Society.

[46]  N. Ashkenasy,et al.  The controlled fabrication of nanopores by focused electron-beam-induced etching , 2009, Nanotechnology.

[47]  L. Lagae,et al.  Shrinking solid-state nanopores using electron-beam-induced deposition , 2009, Nanotechnology.

[48]  Meni Wanunu,et al.  DNA translocation governed by interactions with solid-state nanopores. , 2008, Biophysical journal.

[49]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[50]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[51]  J. Stathis,et al.  Dielectric breakdown mechanisms in gate oxides , 2005 .

[52]  C. Raggi,et al.  Mini review , 2004 .

[53]  Marshall D Graham,et al.  The Coulter Principle: Foundation of an Industry , 2003 .

[54]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[55]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[56]  D. Branton,et al.  Rapid nanopore discrimination between single polynucleotide molecules. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Chenming Hu,et al.  Electrical breakdown in thin gate and tunneling oxides , 1985, IEEE Transactions on Electron Devices.

[58]  B S Bull,et al.  Platelet counts with the Coulter counter. , 1965, American journal of clinical pathology.

[59]  The Foundation of Industry , 1939 .