One-Shot Lossy Quantum Data Compression
暂无分享,去创建一个
Joseph M. Renes | Mark M. Wilde | Nilanjana Datta | Renato Renner | R. Renner | N. Datta | J. Renes | M. Wilde
[1] Katalin Marton,et al. Error exponent for source coding with a fidelity criterion , 1974, IEEE Trans. Inf. Theory.
[2] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[3] Charles H. Bennett,et al. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.
[4] Sergio Verdú,et al. Simulation of random processes and rate-distortion theory , 1996, IEEE Trans. Inf. Theory.
[5] R. Renner,et al. One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.
[6] Toby Berger,et al. Quantum rate-distortion theory for memoryless sources , 2002, IEEE Trans. Inf. Theory.
[7] I. Devetak,et al. Triangle of dualities between quantum communication protocols. , 2006, Physical review letters.
[8] Charles H. Bennett,et al. Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.
[9] D. A. Bell,et al. Information Theory and Reliable Communication , 1969 .
[10] R. Renner,et al. Min- and Max-Entropy in Infinite Dimensions , 2010, 1004.1386.
[11] Marco Tomamichel,et al. Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.
[12] R. Jozsa. Fidelity for Mixed Quantum States , 1994 .
[13] Andreas J. Winter. Coding theorems of quantum information theory , 1999 .
[14] Jeroen van de Graaf,et al. Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.
[15] Andreas J. Winter,et al. Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.
[16] Sergio Verdú,et al. Fixed-Length Lossy Compression in the Finite Blocklength Regime , 2011, IEEE Transactions on Information Theory.
[17] Igor Devetak,et al. Quantum rate-distortion theory for i.i.d. sources , 2000, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).
[18] M. Tomamichel. A framework for non-asymptotic quantum information theory , 2012, 1203.2142.
[19] Renato Renner,et al. Smooth Max-Information as One-Shot Generalization for Mutual Information , 2013, IEEE Transactions on Information Theory.
[20] Tomohiro Ogawa,et al. Making Good Codes for Classical-Quantum Channel Coding via Quantum Hypothesis Testing , 2007, IEEE Transactions on Information Theory.
[21] M. Fannes,et al. Continuity of quantum conditional information , 2003, quant-ph/0312081.
[22] A. Winter,et al. The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[23] Marco Tomamichel,et al. A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.
[24] Mark M. Wilde,et al. Quantum Rate-Distortion Coding With Auxiliary Resources , 2012, IEEE Transactions on Information Theory.
[25] A. Winter. Compression of sources of probability distributions and density operators , 2002, quant-ph/0208131.
[26] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[27] Howard Barnum. Quantum rate-distortion coding , 1998 .
[28] Mark M. Wilde,et al. Quantum Rate Distortion, Reverse Shannon Theorems, and Source-Channel Separation , 2011, IEEE Transactions on Information Theory.
[29] N. Datta,et al. The apex of the family tree of protocols: optimal rates and resource inequalities , 2011, 1103.1135.
[30] Aaron D. Wyner,et al. Coding Theorems for a Discrete Source With a Fidelity CriterionInstitute of Radio Engineers, International Convention Record, vol. 7, 1959. , 1993 .
[31] Xiao-Yu Chen,et al. Entanglement Information Rate Distortion of a Quantum Gaussian Source , 2008, IEEE Transactions on Information Theory.
[32] R. Renner,et al. Generalized Entropies , 2012, 1211.3141.
[33] Ashish V. Thapliyal,et al. Entanglement-Assisted Classical Capacity of Noisy Quantum Channels , 1999, Physical Review Letters.
[34] Mark M. Wilde,et al. Quantum-to-classical rate distortion coding , 2012, ArXiv.
[35] W. Hoeffding. Probability Inequalities for sums of Bounded Random Variables , 1963 .
[36] A. Uhlmann. The "transition probability" in the state space of a ∗-algebra , 1976 .
[37] Igor Devetak,et al. Channel Simulation With Quantum Side Information , 2009, IEEE Transactions on Information Theory.
[38] Seth Lloyd,et al. Gaussian quantum information , 2011, 1110.3234.
[39] R. Renner,et al. The Quantum Reverse Shannon Theorem Based on One-Shot Information Theory , 2009, 0912.3805.
[40] Schumacher,et al. Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[41] P. Hayden,et al. Universal entanglement transformations without communication , 2003 .