Tools for the eigenvalue distribution in a non-Hermitian setting

Abstract Under mild trace norm assumptions on the perturbing sequence, we extend a recent perturbation result based on a theorem by Mirsky. The analysis concerns the eigenvalue distribution and localization of a generic (non-Hermitian) complex perturbation of a bounded Hermitian sequence of matrices. Some examples of application are considered, ranging from the product of Toeplitz sequences to the approximation of PDEs with given boundary conditions. A final discussion on open questions and further lines of research ends the note.

[1]  Sverker Holmgren,et al.  Can One Hear the Composition of a Drum? , 2006 .

[2]  E. E. Tyrtyshnikov A unifying approach to some old and new theorems on distribution and clustering , 1996 .

[3]  Paolo Tilli,et al.  Locally Toeplitz sequences: spectral properties and applications , 1998 .

[4]  B. Bercu,et al.  Sharp large deviations for gaussian quadratic forms with applications , 2000 .

[5]  S. Serra Capizzano,et al.  Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .

[6]  Paolo Tilli,et al.  Some Results on Complex Toeplitz Eigenvalues , 1999 .

[7]  Paolo Tilli,et al.  A note on the spectral distribution of toeplitz matrices , 1998 .

[8]  S. Serra Capizzano,et al.  Distribution results on the algebra generated by Toeplitz sequences: a finite-dimensional approach , 2001 .

[9]  W. Bryc,et al.  Asymptotic results for empirical measures of weighted sums of independent random variables , 2006, math/0607687.

[10]  S. Capizzano Spectral behavior of matrix sequences and discretized boundary value problems , 2001 .

[11]  P. Tilli Singular values and eigenvalues of non-hermitian block Toeplitz matrices , 1996 .

[12]  Gene H. Golub,et al.  How to Deduce a Proper Eigenvalue Cluster from a Proper Singular Value Cluster in the Nonnormal Case , 2005, SIAM J. Matrix Anal. Appl..

[13]  Paolo Tilli,et al.  On unitarily invariant norms of matrix-valued linear positive operators , 2002 .

[14]  Eugene E. Tyrtyshnikov,et al.  Spectra of multilevel toeplitz matrices: Advanced theory via simple matrix relationships , 1998 .

[15]  Leonid Golinskii,et al.  The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.

[16]  R. Bhatia Matrix Analysis , 1996 .

[17]  Stefano Serra-Capizzano,et al.  The GLT class as a generalized Fourier analysis and applications , 2006 .

[18]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[19]  Stefano Serra-Capizzano,et al.  Stability of the notion of approximating class of sequences and applications , 2008 .

[20]  Arno B. J. Kuijlaars,et al.  Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..

[21]  A. Böttcher,et al.  Introduction to Large Truncated Toeplitz Matrices , 1998 .