Text Filtering by Boosting Linear Perceptrons

in information retrieval, lack of positive examples is a main cause of poor performance. In this case most learning algorithms may not characteristics in the data to low recall. To solve the problem of unbalanced data, we propose a boosting method that uses linear perceptrons as weak learnrs. The perceptrons are trained on local data sets. The proposed algorithm is applied to text filtering problem for which only a small portion of positive examples is available. In the experiment on category crude of the Reuters-21578 document set, the boosting method achieved the recall of 80.8%, which is 37.2% improvement over multilayer with comparable precision.