Non Gaussian and Long Memory Statistical Modeling of Internet Traffic

Due to the variety of services and applications available on today's Internet, many properties of the traffic stray from the classical characteristics (Gaussianity and short memory) of standard models. The goal of the present contribution is to propose a statistical model able to account both for the non Gaussian and long memory properties of aggre- gated count processes. First, we introduce the model and a procedure to estimate the corresponding parameters. Second, using a large set of data taken from public reference repositories (Bellcore, LBL, Auckland, UNC, CAIDA) and collected by ourselves, we show that this stochastic process is relevant for Internet traffic modeling for a wide range of aggregation levels. In conclusion we indicate how this modeling could be used in IDS design.

[1]  Walter Willinger,et al.  Self-Similar Network Traffic and Performance Evaluation , 2000 .

[2]  António Pacheco,et al.  Multiscale Fitting Procedure Using Markov Modulated Poisson Processes , 2003, Telecommun. Syst..

[3]  Ilkka Norros,et al.  On the Use of Fractional Brownian Motion in the Theory of Connectionless Networks , 1995, IEEE J. Sel. Areas Commun..

[4]  Walter Willinger,et al.  On the self-similar nature of Ethernet traffic , 1993, SIGCOMM '93.

[5]  Walter Willinger,et al.  Self‐Similar Network Traffic: An Overview , 2002 .

[6]  Sally Floyd,et al.  Wide-area traffic: the failure of Poisson modeling , 1994 .

[7]  Benjamin Melamed,et al.  An Overview of Tes Processes and Modeling Methodology , 1993, Performance/SIGMETRICS Tutorials.

[8]  N.D. Georganas,et al.  Self-Similar Processes in Communications Networks , 1998, IEEE Trans. Inf. Theory.

[9]  Pierre Borgnat,et al.  Détection d'attaques de « déni de services » : ruptures dans les statistiques du trafic , 2005 .

[10]  M. Taqqu,et al.  ON THE AUTOMATIC SELECTION OF THE ONSET OF SCALING , 2003 .

[11]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[12]  Patrice Abry,et al.  Cluster processes: a natural language for network traffic , 2003, IEEE Trans. Signal Process..

[13]  Patrice Abry,et al.  Long-Range Dependence: Theory and Applications , 2002 .

[14]  Michael Devetsikiotis,et al.  Modeling and simulation of self-similar variable bit rate compressed video: a unified approach , 1995, SIGCOMM '95.

[15]  Anja Feldmann,et al.  Data networks as cascades: investigating the multifractal nature of Internet WAN traffic , 1998, SIGCOMM '98.

[16]  Steve Uhlig 3D-LD: a graphical Wavelet-based method for Analyzing Scaling Processes , 2002 .

[17]  R. E. Wheeler Statistical distributions , 1983, APLQ.

[18]  Patrice Abry,et al.  A statistical test for the time constancy of scaling exponents , 2001, IEEE Trans. Signal Process..

[19]  M. Evans Statistical Distributions , 2000 .

[20]  Jan Beran,et al.  Statistics for long-memory processes , 1994 .

[21]  A. Philippe,et al.  Generators of long-range dependent processes: A survey , 2003 .

[22]  P. Abry,et al.  Marginales non gaussiennes et longue mémoire : analyse et synthèse de trafic Internet , 2005 .

[23]  N. Cox Statistical Models in Engineering , 1970 .

[24]  Walter Willinger,et al.  Experimental queueing analysis with long-range dependent packet traffic , 1996, TNET.