Phylogenetic analysis of flatfish (Order Pleuronectiformes) based on mitochondrial 16s rDNA sequences

SUMMARY: The phylogenetic relationships of the order Pleuronectiformes are controversial and at some crucial points remain unresolved. To date most phylogenetic studies on this order have been based on morpho-anatomical criteria, whereas only a few sequence comparisons based studies have been reported. In the present study, the phylogenetic relationships of 30 flatfish species pertaining to seven different families were examined by sequence analysis of the first half of the 16S mitochondrial DNA gene. The results obtained did not support percoids as the sister group of pleuronectiforms. The monophyletic origin of most families analyzed, Soleidae, Scophthalmidae, Achiridae, Pleuronectidae and Bothidae, was strongly supported, except for Paralichthyidae which was clearly subdivided into two groups, one of them associated with high confidence to Pleuronectidae. The analysis of the 16S rRNA gene also suggested the monophyly of Pleuronectiforms as the most probable hypothesis and consistently supported some major interfamily groupings.

[1]  W. W. Dimmick,et al.  Phylogenetic Relationships of Pleuronectiformes Based on Molecular Evidence , 2002, Copeia.

[2]  P. Borsa,et al.  Systematics of the Atlantic-Mediterranean soles Pegusa impar, P. lascaris, Solea aegyptiaca, S. senegalensis, and S. solea (Pleuronectiformes: Soleidae) , 2001 .

[3]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[4]  Athanasios Exadactylos,et al.  Allozyme variation and genetic inter-relationships between seven flatfish species (Pleuronectiformes) , 2001 .

[5]  B. Pardo,et al.  Localization of ribosomal genes in Pleuronectiformes using Ag-, CMA3-banding and in situ hybridization , 2001, Heredity.

[6]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[7]  C. Piccinetti,et al.  Mitochondrial DNA Variation, Phylogenetic Relationships, and Evolution of Four Mediterranean Genera of Soles (Soleidae, Pleuronectiformes) , 2000, Marine Biotechnology.

[8]  R. Hanel,et al.  Multiple Recurrent Evolution of Trophic Types in Northeastern Atlantic and Mediterranean Seabreams (Sparidae, Percoidei) , 2000, Journal of Molecular Evolution.

[9]  C. Piccinetti,et al.  Molecular systematics of the Atlanto‐Mediterranean Solea species , 2000 .

[10]  E. Bermingham,et al.  Molecular phylogenetics and ecological diversification of the transisthmian fish genus Centropomus (Perciformes: Centropomidae). , 1999, Molecular phylogenetics and evolution.

[11]  A. Meyer,et al.  Mitochondrial DNA Phylogeny of the Family Cichlidae: Monophyly and Fast Molecular Evolution of the Neotropical Assemblage , 1999, Journal of Molecular Evolution.

[12]  F. Chapleau,et al.  PHYLOGENETIC STATUS OF PARALICHTHODES ALGOENSIS (PLEURONECTIFORMES : PARALICHTHODIDAE) , 1998 .

[13]  D. Hillis,et al.  Taxonomic sampling, phylogenetic accuracy, and investigator bias. , 1998, Systematic biology.

[14]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[15]  D. Hensley An overview of the systematics and biogeography of the flatfishes , 1997 .

[16]  K. Saitoh,et al.  Preliminary data on restriction mapping and detection of length variation in Japanese flounder mitochondrial DNA , 1995 .

[17]  A. Meyer,et al.  Phylogenetic analysis of the South American electric fishes (order Gymnotiformes) and the evolution of their electrogenic system: a synthesis based on morphology, electrophysiology, and mitochondrial sequence data. , 1995, Molecular biology and evolution.

[18]  O. Verneau,et al.  Phylogeny of flatfishes (Pleuronectiformes): comparisons and contradictions of molecular and morpho‐anatomical data , 1994 .

[19]  J. S. Nelson,et al.  Fishes of the World, 3rd Edition , 1994 .

[20]  A. Smith,et al.  Rooting molecular trees: problems and strategies , 1994 .

[21]  D. Colombera,et al.  Chromosome analysis of Bothus podas (Pisces, Pleuronectiformes) from the Mediterranean Sea , 1993 .

[22]  G. Lecointre,et al.  A 28S rRNA-based phylogeny of the gnathostomes: first steps in the analysis of conflict and congruence with morphologically based cladograms. , 1993, Molecular phylogenetics and evolution.

[23]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[24]  A. Keast,et al.  A phylogenetic reassessment of the monophyletic status of the family Soleidae, with comments on the suborder Soleoidei (Pisces; Pleuronectiformes) , 1988 .

[25]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[26]  M. Jotterand-Bellomo New developments in vertebrate cytotaxonomy VII , 1984, Genetica.

[27]  R. Patro,et al.  Chromosomal Studies in Five Indian Flatfishes , 1981 .

[28]  W. H. Legrande Karyology of Six Species of Louisiana Flatfishes (Pleuronectiformes: Osteichthyes) , 1975 .

[29]  K. Amaoka Studies on the sinistral flounders found in the waters around Japan. Taxonomy, anatomy and phylogeny , 1969 .

[30]  C. T. Regan,et al.  LIV.—The origin and evolution of the Teleostean fishes of the order Heterosomata , 1910 .

[31]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[32]  E. Capanna,et al.  New developments in vertebrate cytotaxonomy III. Karyology of bony fishes: A review , 2004, Genetica.

[33]  Andrew P. Martin,et al.  THE SIMPLE FOOL’S GUIDE TO PCR , 2004 .

[34]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[35]  Carol A. Stepien,et al.  CHAPTER 15 – The Evolution of Blennioid Fishes Based on an Analysis of Mitochondrial 12S rDNA , 1997 .

[36]  G. Ortí CHAPTER 14 – Radiation of Characiform Fishes: Evidence from Mitochondrial and Nuclear DNA Sequences , 1997 .

[37]  F. Chapleau Pleuronectiform relationships : a cladistic reassessment , 1993 .

[38]  D. Hillis,et al.  Ribosomal RNA secondary structure: compensatory mutations and implications for phylogenetic analysis. , 1993, Molecular biology and evolution.

[39]  David M. Johnson,et al.  Percomorph phylogeny: a survey of acanthomorphs and a new proposal , 1993 .

[40]  A. Blanquer Phylogéographie intraspécifique d'un poisson marin, le flet Platichthys flesus L. (Heterosomata) : polymorphisme des marqueurs nucléaires et mitochondriaux , 1990 .

[41]  David P. Mindell,et al.  Ribosomal RNA in Vertebrates: Evolution and Phylogenetic Applications , 1990 .

[42]  Y. Ojima,et al.  Chromosomes of flounder, Paralichthys olivaceus. , 1986 .

[43]  W. Brown The Mitochondrial Genome of Animals , 1985 .

[44]  George V. Lauder,et al.  The evolution and interrelationships of the actinopterygian fishes , 1983 .

[45]  C. Hubbs Phylogenetic position of the Citharidae, a family of flatfishes , 1945 .

[46]  J. R. Norman A systematic monograph of the flatfishes (Heterosomata) , 1934 .

[47]  H. M. Kyle The Asymmetry, Metamorphosis and Origin of Flat-Fishes , 1923 .