An Understandable Way to Extend the Ordinary Linear Order on Real Numbers to a Linear Order on Interval Numbers

Inspired by reflection transformations and rotation transformations in plane geometry and dictionary orders in lattice theory, in this article, we explore, through exposing the possible motivation of definition of a defined linear order <inline-formula><tex-math notation="LaTeX">$\leqslant$</tex-math></inline-formula> on <inline-formula><tex-math notation="LaTeX">${\mathbb {R}}$</tex-math></inline-formula> (the set of all interval numbers), how to find an easy-to-understand way to extend the ordinary linear order on <inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula> (the set of all real numbers) to a linear order on <inline-formula><tex-math notation="LaTeX">${\mathbb {R}}$</tex-math></inline-formula>. Theory and application aspects are also studied. For an arbitrary cardinal number <inline-formula><tex-math notation="LaTeX">$\kappa$</tex-math></inline-formula> (<inline-formula><tex-math notation="LaTeX">$\kappa \not=0$</tex-math></inline-formula>), we define seven operations and the point-wise order induced by <inline-formula><tex-math notation="LaTeX">$\leqslant$</tex-math></inline-formula> on <inline-formula><tex-math notation="LaTeX">${\mathbb {R}}^\kappa$</tex-math></inline-formula> (the set of all sequences indexed by <inline-formula><tex-math notation="LaTeX">$\kappa$</tex-math></inline-formula> and consisting of interval numbers). It is found that <inline-formula><tex-math notation="LaTeX">$({\mathbb {R}},\leqslant)$</tex-math></inline-formula>, much like <inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula> (with the ordinary linear order), has some desirable properties; particularly, <inline-formula><tex-math notation="LaTeX">$\leqslant$</tex-math></inline-formula> can be used to describe the corrected degree of possibility of an interval number is smaller than another. Generalizing the discovery process of <inline-formula><tex-math notation="LaTeX">$\leqslant$</tex-math></inline-formula>, we provide an understandable way to extend the ordinary linear order on <inline-formula><tex-math notation="LaTeX">$R$</tex-math></inline-formula> to a linear order on <inline-formula><tex-math notation="LaTeX">${\mathbb {R}}$</tex-math></inline-formula> (even on the plane <inline-formula><tex-math notation="LaTeX">$R^2$</tex-math></inline-formula>), which meets some specific requirement, and we give a clear description on the relation between the admissible orders and those we propose. Those urge us to take a look at the possible applications of <inline-formula><tex-math notation="LaTeX">$\leqslant$</tex-math></inline-formula> (a delegation of linear orders on <inline-formula><tex-math notation="LaTeX">${\mathbb {R}}$</tex-math></inline-formula>). Precisely, to propose an ordering method (based on this linear order and the matched metric and weighted averaging aggregation operator), which can be used to deal with very complicated generalized interval-valued preference hesitant relations in group decision-making problems.