A review of a posteriori error control and adaptivity for approximations of non‐linear conservation laws
暂无分享,去创建一个
[1] R. Eymard,et al. Error estimates for the approximate solutions of a nonlinear hyperbolic equation given by finite volume schemes , 1998 .
[2] T. Gallouët,et al. A uniqueness result for measure-valued solutions of nonlinear hyperbolic equations , 1993, Differential and Integral Equations.
[3] Albert Cohen,et al. Fully adaptive multiresolution finite volume schemes for conservation laws , 2003, Math. Comput..
[4] Anders Szepessy,et al. Convergence of a streamline diffusion finite element method for a conservation law with boundary conditions , 1991 .
[5] Timothy J. Barth,et al. A Posteriori Error Estimation for Discontinuous Galerkin Approximations of Hyperbolic Systems , 2000 .
[6] Charalambos Makridakis,et al. Finite volume relaxation schemes for multidimensional conservation laws , 2001, Math. Comput..
[7] R. LeVeque. High-resolution conservative algorithms for advection in incompressible flow , 1996 .
[8] Endre Süli,et al. Adaptive Finite Element Approximation of Hyperbolic Problems , 2003 .
[9] Jérôme Jaffré,et al. CONVERGENCE OF THE DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR HYPERBOLIC CONSERVATION LAWS , 1995 .
[10] Chi-Wang Shu,et al. TVB Runge-Kutta local projection discontinuous galerkin finite element method for conservation laws. II: General framework , 1989 .
[11] Andreas Dedner,et al. A New hp-Adaptive DG Scheme for Conservation Laws Based on Error Control , 2008 .
[12] Bernardo Cockburn,et al. A priori error estimates for numerical methods for scalar conservation laws. Part II : flux-splitting monotone schemes on irregular Cartesian grids , 1997, Math. Comput..
[13] Siegfried Müller,et al. Adaptive Multiscale Schemes for Conservation Laws , 2002, Lecture Notes in Computational Science and Engineering.
[14] J. Nédélec,et al. First order quasilinear equations with boundary conditions , 1979 .
[15] Mario Ohlberger,et al. Adaptive Second Order Central Schemes on Unstructured Staggered Grids , 2003 .
[16] E. Süli,et al. hp‐Discontinuous Galerkin finite element methods for hyperbolic problems: error analysis and adaptivity , 2002 .
[17] Bernardo Cockburn,et al. A Priori Error Estimates for Numerical Methods for Scalar Conservation Laws Part III: Multidimensional Flux-Splitting Monotone Schemes on Non-Cartesian Grids , 1998 .
[18] Chi-Wang Shu,et al. Error Estimates to Smooth Solutions of Runge-Kutta Discontinuous Galerkin Methods for Scalar Conservation Laws , 2004, SIAM J. Numer. Anal..
[19] Mario Ohlberger,et al. A posteriori error estimates for upwind finite volume schemes for nonlinear conservation laws in multi dimensions , 2000, Math. Comput..
[20] B. Perthame,et al. Kruzkov's estimates for scalar conservation laws revisited , 1998 .
[21] E. Tadmor. Local error estimates for discontinuous solutions of nonlinear hyperbolic equations , 1991 .
[22] Christian Rohde,et al. Finite‐volume schemes for Friedrichs systems in multiple space dimensions: A priori and a posteriori error estimates , 2005 .
[23] Bernardo Cockburn,et al. A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach , 1996, Math. Comput..
[24] Marc Küther,et al. Error Estimates for the Staggered Lax-Friedrichs Scheme on Unstructured Grids , 2001, SIAM J. Numer. Anal..
[25] M. Vignal. Schemas volumes finis pour des équations elliptiques ou hyperboliques avec conditions aux limites, convergence et estimations d'erreur , 1997 .
[26] Chi-Wang Shu,et al. Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..
[27] Endre Süli,et al. Finite element methods for hyperbolic problems: a posteriori error analysis and adaptivity , 1996 .
[28] A. I. Vol'pert,et al. Cauchy's Problem for Degenerate Second Order Quasilinear Parabolic Equations , 1969 .
[29] S. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids , 1979 .
[30] Julien Vovelle,et al. Convergence of finite volume monotone schemes for scalar conservation laws on bounded domains , 2002, Numerische Mathematik.
[31] Martin Rumpf,et al. Towards a Unified Framework for Scientific Computing , 2005 .
[32] Andreas Dedner,et al. Error Control for a Class of Runge-Kutta Discontinuous Galerkin Methods for Nonlinear Conservation Laws , 2007, SIAM J. Numer. Anal..
[33] Endre Süli,et al. A posteriori error analysis for numerical approximations of Friedrichs systems , 1999, Numerische Mathematik.
[34] Bernardo Cockburn,et al. Convergence of the finite volume method for multidimensional conservation laws , 1995 .
[35] C. Makridakis,et al. Convergence and error estimates of relaxation schemes for multidimensional conservation laws , 1999 .
[36] Bernardo Cockburn,et al. Error estimates for finite element methods for scalar conservation laws , 1996 .
[37] N. N. Kuznetsov. Accuracy of some approximate methods for computing the weak solutions of a first-order quasi-linear equation , 1976 .
[38] Ralf Hartmann,et al. Adaptive Discontinuous Galerkin Finite Element Methods for Nonlinear Hyperbolic Conservation Laws , 2002, SIAM J. Sci. Comput..
[39] J. Málek. Weak and Measure-valued Solutions to Evolutionary PDEs , 1996 .
[40] Felix Otto,et al. Initial-boundary value problem for a scalar conservation law , 1996 .
[41] J. Carrillo. Entropy Solutions for Nonlinear Degenerate Problems , 1999 .
[42] Andreas Dedner,et al. The Distributed and Unified Numerics Environment (DUNE) , 2006 .
[43] Laurent Gosse,et al. Two A Posteriori Error Estimates for One-Dimensional Scalar Conservation Laws , 2000, SIAM J. Numer. Anal..
[44] R. Eymard,et al. Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.
[45] Jean-Paul Vila,et al. Numerical viscosity and convergence of finite volume methods for conservation laws with boundary conditions , 1995 .
[46] Endre Süli,et al. hp-Adaptive Discontinuous Galerkin Finite Element Methods for First-Order Hyperbolic Problems , 2001, SIAM J. Sci. Comput..
[47] S. Kružkov. FIRST ORDER QUASILINEAR EQUATIONS IN SEVERAL INDEPENDENT VARIABLES , 1970 .
[48] Mario Ohlberger,et al. Error estimate for the approximation of nonlinear conservation laws on bounded domains by the finite volume method , 2005, Math. Comput..
[49] Claes Johnson,et al. Adaptive finite element methods for conservation laws based on a posteriori error estimates , 1995 .
[50] A. I. Khisamutdinov. A bounded variance estimator for computing by the Monte Carlo method the flux of particles at a point , 1976 .
[51] Karen Dragon Devine,et al. A posteriori error estimation for discontinuous Galerkin solutions of hyperbolic problems , 2002 .
[52] Bernardo Cockburn,et al. An error estimate for finite volume methods for multidimensional conservation laws , 1994 .
[53] Claire Chainais-Hillairet,et al. Finite volume schemes for a nonlinear hyperbolic equation. Convergence towards the entropy solution and error estimate , 1999 .
[54] Chi-Wang Shu,et al. The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case , 1990 .