Scale and translation-invariance for novel objects in human vision

[1]  Yair Weiss,et al.  Why do deep convolutional networks generalize so poorly to small image transformations? , 2018, J. Mach. Learn. Res..

[2]  Shimon Ullman,et al.  Large Field and High Resolution: Detecting Needle in Haystack , 2018, Journal of Vision.

[3]  Nasour Bagheri,et al.  Invariant object recognition is a personalized selection of invariant features in humans, not simply explained by hierarchical feed-forward vision models , 2017, Scientific Reports.

[4]  Lauren E. Welbourne,et al.  Humans, but Not Deep Neural Networks, Often Miss Giant Targets in Scenes , 2017, Current Biology.

[5]  Tomaso A. Poggio,et al.  Do Deep Neural Networks Suffer from Crowding? , 2017, NIPS.

[6]  Kaiming He,et al.  Mask R-CNN , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[7]  Tomaso A. Poggio,et al.  Eccentricity Dependent Deep Neural Networks: Modeling Invariance in Human Vision , 2017, AAAI Spring Symposia.

[8]  Nikos Komodakis,et al.  Rotation Equivariant Vector Field Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[9]  Serge J. Belongie,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Fabio Anselmi,et al.  Visual Cortex and Deep Networks: Learning Invariant Representations , 2016 .

[11]  Lorenzo Rosasco,et al.  Unsupervised learning of invariant representations , 2016, Theor. Comput. Sci..

[12]  Antonio Torralba,et al.  Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition reveals hierarchical correspondence , 2016, Scientific Reports.

[13]  Bruce G Cumming,et al.  Variability and Correlations in Primary Visual Cortical Neurons Driven by Fixational Eye Movements , 2016, The Journal of Neuroscience.

[14]  Julian N. Marewski,et al.  What can the brain teach us about building artificial intelligence? , 2016, Behavioral and Brain Sciences.

[15]  M. Welling,et al.  Group Equivariant Convolutional Networks , 2016, ICML.

[16]  J. DiCarlo,et al.  Using goal-driven deep learning models to understand sensory cortex , 2016, Nature Neuroscience.

[17]  Ha Hong,et al.  Explicit information for category-orthogonal object properties increases along the ventral stream , 2016, Nature Neuroscience.

[18]  Shimon Ullman,et al.  Atoms of recognition in human and computer vision , 2016, Proceedings of the National Academy of Sciences.

[19]  Koray Kavukcuoglu,et al.  Exploiting Cyclic Symmetry in Convolutional Neural Networks , 2016, ICML.

[20]  Timothée Masquelier,et al.  Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition , 2015, Scientific Reports.

[21]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Andrew B Watson,et al.  Letter identification and the neural image classifier. , 2015, Journal of vision.

[23]  Nikolaus Kriegeskorte,et al.  Deep Supervised, but Not Unsupervised, Models May Explain IT Cortical Representation , 2014, PLoS Comput. Biol..

[24]  J. DiCarlo,et al.  Comparison of Object Recognition Behavior in Human and Monkey , 2014, The Journal of Neuroscience.

[25]  Tomaso A. Poggio,et al.  Computational role of eccentricity dependent cortical magnification , 2014, ArXiv.

[26]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[27]  I. Rentschler,et al.  Peripheral vision and pattern recognition: a review. , 2011, Journal of vision.

[28]  Eero P. Simoncelli,et al.  Metamers of the ventral stream , 2011, Nature Neuroscience.

[29]  Ipek Oruç,et al.  Critical frequencies in the perception of letters, faces, and novel shapes: evidence for limited scale invariance for faces. , 2010, Journal of vision.

[30]  Nicole C. Rust,et al.  Selectivity and Tolerance (“Invariance”) Both Increase as Visual Information Propagates from Cortical Area V4 to IT , 2010, The Journal of Neuroscience.

[31]  Dwight J. Kravitz,et al.  How position dependent is visual object recognition? , 2008, Trends in Cognitive Sciences.

[32]  Tomaso Poggio,et al.  Fast Readout of Object Identity from Macaque Inferior Temporal Cortex , 2005, Science.

[33]  S. Edelman,et al.  Imperfect Invariance to Object Translation in the Discrimination of Complex Shapes , 2001, Perception.

[34]  E. Rolls Functions of the Primate Temporal Lobe Cortical Visual Areas in Invariant Visual Object and Face Recognition , 2000, Neuron.

[35]  C. Furmanski,et al.  Perceptual learning in object recognition: object specificity and size invariance , 2000, Vision Research.

[36]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[37]  I. Biederman,et al.  Size invariance in visual object priming , 1992 .

[38]  I. Rentschler,et al.  Contrast thresholds for identification of numeric characters in direct and eccentric view , 1991, Perception & psychophysics.

[39]  D. Marr,et al.  Smallest channel in early human vision. , 1980, Journal of the Optical Society of America.

[40]  S M Anstis,et al.  Letter: A chart demonstrating variations in acuity with retinal position. , 1974, Vision research.

[41]  R. C. Macridis A review , 1963 .

[42]  Joel Z. Leibo,et al.  The dynamics of invariant object recognition in the human visual system. , 2014, Journal of neurophysiology.

[43]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[44]  M. Fahle,et al.  Limited translation invariance of human visual pattern recognition , 1998, Perception & psychophysics.

[45]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[46]  Minami Ito,et al.  Size and position invariance of neuronal responses in monkey inferotemporal cortex. , 1995, Journal of neurophysiology.

[47]  J. O'Regan,et al.  Some results on translation invariance in the human visual system. , 1990, Spatial vision.