Recursive Quantum Convolutional Encoders are Catastrophic: A Simple Proof
暂无分享,去创建一个
[1] Robert J. McEliece,et al. The Theory of Information and Coding , 1979 .
[2] Dariush Divsalar,et al. Serial Concatenation of Interleaved Codes: Performance Analysis, Design, and Iterative Decoding , 1997, IEEE Trans. Inf. Theory.
[3] Rolf Johannesson,et al. Fundamentals of Convolutional Coding , 1999 .
[4] Jean-Pierre Tillich,et al. Description of a quantum convolutional code. , 2003, Physical review letters.
[5] David Poulin,et al. Quantum Serial Turbo Codes , 2009, IEEE Transactions on Information Theory.
[6] Jean-Pierre Tillich,et al. The minimum distance of classical and quantum turbo-codes , 2011 .
[7] R. Urbanke,et al. On the minimum distance of parallel and serially concatenated codes , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).
[8] Zunaira Babar,et al. Entanglement-Assisted Quantum Turbo Codes , 2010, IEEE Transactions on Information Theory.
[9] Andrew J. Viterbi,et al. Convolutional Codes and Their Performance in Communication Systems , 1971 .
[10] Mark M. Wilde,et al. Entanglement boosts quantum turbo codes , 2011, ISIT.
[11] Mark M. Wilde,et al. Minimal-Memory, Noncatastrophic, Polynomial-Depth Quantum Convolutional Encoders , 2011, IEEE Transactions on Information Theory.
[12] K. X. M. Tzeng,et al. Convolutional Codes and 'Their Performance in Communication Systems , 1971 .