Machine Learning Research: Four Current Directions

Machine Learning research has been making great progress in many directions. This article summarizes four of these directions and discusses some current open problems. The four directions are (a) improving classiication accuracy by learning ensembles of classiiers, (b) methods for scaling up supervised learning algorithms, (c) reinforcement learning, and (d) learning complex stochastic models.

[1]  Chris Carter,et al.  Multiple decision trees , 2013, UAI.

[2]  Oleksandr Makeyev,et al.  Neural network with ensembles , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[3]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[4]  David Heckerman,et al.  A Tutorial on Learning with Bayesian Networks , 1999, Innovations in Bayesian Networks.

[5]  Leslie Pack Kaelbling,et al.  Learning Policies for Partially Observable Environments: Scaling Up , 1997, ICML.

[6]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1997, EuroCOLT.

[7]  Robert E. Schapire,et al.  Using output codes to boost multiclass learning problems , 1997, ICML.

[8]  Ron Kohavi,et al.  Option Decision Trees with Majority Votes , 1997, ICML.

[9]  Sherif Hashem,et al.  Optimal Linear Combinations of Neural Networks , 1997, Neural Networks.

[10]  David W. Aha,et al.  A Review and Empirical Evaluation of Feature Weighting Methods for a Class of Lazy Learning Algorithms , 1997, Artificial Intelligence Review.

[11]  Michael I. Jordan,et al.  Probabilistic Independence Networks for Hidden Markov Probability Models , 1997, Neural Computation.

[12]  Leslie Pack Kaelbling,et al.  The National Science Foundation Workshop on Reinforcement Learning , 1996, AI Mag..

[13]  Enrique F. Castillo,et al.  Expert Systems and Probabilistic Network Models , 1996, Monographs in Computer Science.

[14]  Satinder Singh,et al.  Reinforcement Learning for Dynamic Channel Allocation in Cellular Telephone Systems , 1996, NIPS.

[15]  Paul W. Munro,et al.  Competition Among Networks Improves Committee Performance , 1996, NIPS.

[16]  Bruce E. Rosen,et al.  Ensemble Learning Using Decorrelated Neural Networks , 1996, Connect. Sci..

[17]  Kagan Tumer,et al.  Error Correlation and Error Reduction in Ensemble Classifiers , 1996, Connect. Sci..

[18]  Rakesh Agrawal,et al.  SPRINT: A Scalable Parallel Classifier for Data Mining , 1996, VLDB.

[19]  Prasad Tadepalli,et al.  Auto-Exploratory Average Reward Reinforcement Learning , 1996, AAAI/IAAI, Vol. 1.

[20]  Ron Kohavi,et al.  Error-Based and Entropy-Based Discretization of Continuous Features , 1996, KDD.

[21]  Andrew R. Golding,et al.  Applying Winnow to Context-Sensitive Spelling Correction , 1996, ICML 1996.

[22]  Yoav Freund,et al.  Experiments with a New Boosting Algorithm , 1996, ICML.

[23]  Geoffrey E. Hinton,et al.  Using Generative Models for Handwritten Digit Recognition , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Andrew W. Moore,et al.  Reinforcement Learning: A Survey , 1996, J. Artif. Intell. Res..

[25]  Jorma Rissanen,et al.  SLIQ: A Fast Scalable Classifier for Data Mining , 1996, EDBT.

[26]  Andrew G. Barto,et al.  Improving Elevator Performance Using Reinforcement Learning , 1995, NIPS.

[27]  Mark W. Craven,et al.  Extracting Tree-Structured Representations of Trained Networks , 1995, NIPS.

[28]  Paul W. Munro,et al.  Improving Committee Diagnosis with Resampling Techniques , 1995, NIPS.

[29]  David W. Opitz,et al.  Generating Accurate and Diverse Members of a Neural-Network Ensemble , 1995, NIPS.

[30]  Stuart J. Russell,et al.  Local Learning in Probabilistic Networks with Hidden Variables , 1995, IJCAI.

[31]  Stuart J. Russell,et al.  Approximating Optimal Policies for Partially Observable Stochastic Domains , 1995, IJCAI.

[32]  Christopher Meek,et al.  Learning Bayesian Networks with Discrete Variables from Data , 1995, KDD.

[33]  Salvatore J. Stolfo,et al.  Learning Arbiter and Combiner Trees from Partitioned Data for Scaling Machine Learning , 1995, KDD.

[34]  Wei Zhang,et al.  A Reinforcement Learning Approach to job-shop Scheduling , 1995, IJCAI.

[35]  Stuart J. Russell,et al.  Stochastic simulation algorithms for dynamic probabilistic networks , 1995, UAI.

[36]  Andrew McCallum,et al.  Instance-Based Utile Distinctions for Reinforcement Learning with Hidden State , 1995, ICML.

[37]  Thomas G. Dietterich,et al.  Error-Correcting Output Coding Corrects Bias and Variance , 1995, ICML.

[38]  Thomas G. Dietterich,et al.  An Experimental Comparison of the Nearest-Neighbor and Nearest-Hyperrectangle Algorithms , 1995, Machine Learning.

[39]  Gerald Tesauro,et al.  Temporal difference learning and TD-Gammon , 1995, CACM.

[40]  David G. Lowe,et al.  Similarity Metric Learning for a Variable-Kernel Classifier , 1995, Neural Computation.

[41]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[42]  Wray L. Buntine Operations for Learning with Graphical Models , 1994, J. Artif. Intell. Res..

[43]  Leslie Pack Kaelbling,et al.  Acting Optimally in Partially Observable Stochastic Domains , 1994, AAAI.

[44]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[45]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[46]  Andrew W. Moore,et al.  Efficient Algorithms for Minimizing Cross Validation Error , 1994, ICML.

[47]  Johannes Fürnkranz,et al.  Incremental Reduced Error Pruning , 1994, ICML.

[48]  Andreas Stolcke,et al.  Best-first Model Merging for Hidden Markov Model Induction , 1994, ArXiv.

[49]  Igor Kononenko,et al.  Estimating Attributes: Analysis and Extensions of RELIEF , 1994, ECML.

[50]  Walter R. Gilks,et al.  A Language and Program for Complex Bayesian Modelling , 1994 .

[51]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[52]  Monte Zweben,et al.  Scheduling and rescheduling with iterative repair , 1993, IEEE Trans. Syst. Man Cybern..

[53]  Usama M. Fayyad,et al.  Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning , 1993, IJCAI.

[54]  David J. Spiegelhalter,et al.  Bayesian analysis in expert systems , 1993 .

[55]  Bruce D'Ambrosio,et al.  Incremental Probabilistic Inference , 1993, UAI.

[56]  Anton Schwartz,et al.  A Reinforcement Learning Method for Maximizing Undiscounted Rewards , 1993, ICML.

[57]  Stuart J. Russell,et al.  Decision Theoretic Subsampling for Induction on Large Databases , 1993, ICML.

[58]  Geoffrey E. Hinton,et al.  Feudal Reinforcement Learning , 1992, NIPS.

[59]  L. Cooper,et al.  When Networks Disagree: Ensemble Methods for Hybrid Neural Networks , 1992 .

[60]  Larry A. Rendell,et al.  A Practical Approach to Feature Selection , 1992, ML.

[61]  J. Mesirov,et al.  Hybrid system for protein secondary structure prediction. , 1992, Journal of molecular biology.

[62]  Gerald Tesauro,et al.  Practical issues in temporal difference learning , 1992, Machine Learning.

[63]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[64]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[65]  Jason Catlett,et al.  On Changing Continuous Attributes into Ordered Discrete Attributes , 1991, EWSL.

[66]  John F. Kolen,et al.  Backpropagation is Sensitive to Initial Conditions , 1990, Complex Syst..

[67]  Judea Pearl,et al.  Equivalence and Synthesis of Causal Models , 1990, UAI.

[68]  Yaser S. Abu-Mostafa,et al.  Learning from hints in neural networks , 1990, J. Complex..

[69]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[70]  Oren Etzioni,et al.  Explanation-Based Learning: A Problem Solving Perspective , 1989, Artif. Intell..

[71]  Ronald L. Rivest,et al.  Inferring Decision Trees Using the Minimum Description Length Principle , 1989, Inf. Comput..

[72]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[73]  Keiji Kanazawa,et al.  A model for reasoning about persistence and causation , 1989 .

[74]  Ronald L. Rivest,et al.  Training a 3-node neural network is NP-complete , 1988, COLT '88.

[75]  Richard S. Sutton,et al.  Learning to predict by the methods of temporal differences , 1988, Machine Learning.

[76]  N. Littlestone Learning Quickly When Irrelevant Attributes Abound: A New Linear-Threshold Algorithm , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[77]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[78]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[79]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[80]  Ronald L. Rivest,et al.  Constructing Optimal Binary Decision Trees is NP-Complete , 1976, Inf. Process. Lett..

[81]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[82]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[83]  Arthur L. Samuel,et al.  Some Studies in Machine Learning Using the Game of Checkers , 1967, IBM J. Res. Dev..

[84]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[85]  Dimitri P. Bertsekas,et al.  Neuro-Dynamic Programming , 2009, Encyclopedia of Optimization.

[86]  Lakhmi C. Jain,et al.  Introduction to Bayesian Networks , 2008 .

[87]  Thomas G. Dietterich,et al.  Machine Learning Bias, Statistical Bias, and Statistical Variance of Decision Tree Algorithms , 2008 .

[88]  Satinder Singh Transfer of learning by composing solutions of elemental sequential tasks , 2004, Machine Learning.

[89]  G. Cooper,et al.  A Bayesian Method for the Induction of Probabilistic Networks from Data , 2004, Machine Learning.

[90]  Avrim Blum,et al.  Empirical Support for Winnow and Weighted-Majority Algorithms: Results on a Calendar Scheduling Domain , 2004, Machine Learning.

[91]  Sridhar Mahadevan,et al.  Average reward reinforcement learning: Foundations, algorithms, and empirical results , 2004, Machine Learning.

[92]  Michael J. Pazzani,et al.  Error reduction through learning multiple descriptions , 2004, Machine Learning.

[93]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[94]  Leo Breiman,et al.  Stacked regressions , 2004, Machine Learning.

[95]  Peter Dayan,et al.  Technical Note: Q-Learning , 2004, Machine Learning.

[96]  Matthew J. Beal,et al.  Factorial Hidden Markov Models , 2004, Machine Learning.

[97]  Catherine Blake,et al.  UCI Repository of machine learning databases , 1998 .

[98]  ItalyDavid W. AhaNavy Extending Local Learners with Error-correcting Output Codes Extending Local Learners with Error-correcting Output Codes , 1997 .

[99]  J. Ross Quinlan,et al.  Bagging, Boosting, and C4.5 , 1996, AAAI/IAAI, Vol. 1.

[100]  Pedro M. Domingos,et al.  Beyond Independence: Conditions for the Optimality of the Simple Bayesian Classifier , 1996, ICML.

[101]  Kevin J. Cherkauer Human Expert-level Performance on a Scientiic Image Analysis Task by a System Using Combined Artiicial Neural Networks , 1996 .

[102]  Rich Caruana,et al.  Algorithms and Applications for Multitask Learning , 1996, ICML.

[103]  Geoffrey J. Gordon Stable Function Approximation in Dynamic Programming , 1995, ICML.

[104]  Andrew G. Barto,et al.  Learning to Act Using Real-Time Dynamic Programming , 1995, Artif. Intell..

[105]  William W. Cohen Fast Eeective Rule Induction , 1995 .

[106]  S. B. Flexner,et al.  Random House unabridged dictionary , 1993 .

[107]  A. Atkinson Subset Selection in Regression , 1992 .

[108]  H. Kucera,et al.  Computational analysis of present-day American English , 1967 .

[109]  Wray L. Buntine A Guide to the Literature on Learning Probabilistic Networks from Data , 1996, IEEE Trans. Knowl. Data Eng..