Taxonomy of Evolution Strategies

In order to provide an integrated overview of the various developments in modern evolution strategies, this chapter provides a possible taxonomy and classification of the algorithms. Section 3.1 starts by providing the different development strands of evolution strategies. In Sect. 3.2, characteristics of modern evolution strategies are identified which can be used for defining the corresponding taxonomy.

[1]  Anne Auger,et al.  Mirrored Sampling and Sequential Selection for Evolution Strategies , 2010, PPSN.

[2]  Anne Auger,et al.  Investigating the Local-Meta-Model CMA-ES for Large Population Sizes , 2010, EvoApplications.

[3]  Nikolaus Hansen,et al.  A Derandomized Approach to Self-Adaptation of Evolution Strategies , 1994, Evolutionary Computation.

[4]  Thomas Bäck,et al.  Mixed-integer evolution strategies for parameter optimization and their applications to medical image analysis , 2005 .

[5]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[6]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[7]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[8]  Dirk V. Arnold,et al.  Active covariance matrix adaptation for the (1+1)-CMA-ES , 2010, GECCO.

[9]  Nikolaus Hansen,et al.  A restart CMA evolution strategy with increasing population size , 2005, 2005 IEEE Congress on Evolutionary Computation.

[10]  Raymond Ros,et al.  A Simple Modification in CMA-ES Achieving Linear Time and Space Complexity , 2008, PPSN.

[11]  Anne Auger,et al.  Mirrored sampling in evolution strategies with weighted recombination , 2011, GECCO '11.

[12]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[13]  Anne Auger,et al.  Local-meta-model CMA-ES for partially separable functions , 2011, GECCO '11.

[14]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[15]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[16]  Dirk V. Arnold,et al.  Improving Evolution Strategies through Active Covariance Matrix Adaptation , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[17]  Günter Rudolph,et al.  When parameter tuning actually is parameter control , 2011, GECCO '11.

[18]  Bernhard Sendhoff,et al.  Covariance Matrix Adaptation Revisited - The CMSA Evolution Strategy - , 2008, PPSN.

[19]  Tom Schaul,et al.  Exponential natural evolution strategies , 2010, GECCO '10.

[20]  Tom Schaul,et al.  Natural Evolution Strategies , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[21]  Anne Auger,et al.  LS-CMA-ES: A Second-Order Algorithm for Covariance Matrix Adaptation , 2004, PPSN.

[22]  Tom Schaul,et al.  Efficient natural evolution strategies , 2009, GECCO.

[23]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[24]  Nikolaus Hansen,et al.  Step-Size Adaption Based on Non-Local Use of Selection Information , 1994, PPSN.

[25]  Anne Auger,et al.  Performance evaluation of an advanced local search evolutionary algorithm , 2005, 2005 IEEE Congress on Evolutionary Computation.

[26]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[27]  Christian Igel,et al.  A computational efficient covariance matrix update and a (1+1)-CMA for evolution strategies , 2006, GECCO.

[28]  Petros Koumoutsakos,et al.  Local Meta-models for Optimization Using Evolution Strategies , 2006, PPSN.