Research on Nonlinear Dynamic Characteristics of Structures Supported on Slide-Limited Friction Base Isolation System

This paper presents a new type of base isolation system, i.e., slide-limited friction (S-LF) base isolation system. Based on this system, the harmonic and subharmonic periodic response of S-LF subjected to harmonic motions is investigated by using Fourier-Galerkin-Newton (FGN) method with Floquet theory. The dynamic response of S-LF subjected to earthquake ground motions is calculated with a high order precision direct integration method, and the numerical results are presented in maximum acceleration response spectra of superstructure and maximum sliding displacement response spectrum form. The comparison of isolating effects of S-LF, pure-friction base isolation system (P-F) and resilient-friction base isolation system (R-FBI) shows that the isolating property of S-LF is superior to those of P-F and R-FBI. Finally, by analyzing an engineering example, it is observed that the distribution of the maximum shear between floors and absolute acceleration of S-LF to earthquake ground motion is very different from that of traditional structures.