Simplest ODE Equivalents of Chua's equations

The so-called elementary canonical state models of the third-order piecewise-linear (PWL) dynamical systems, as the simplest ODE equivalents of Chua's equations, are presented. Their mutual relations using the linear topological conjugacy are demonstrated in order to show in detail that Chua's equations and their canonical ODE equivalents represent various forms of qualitatively equivalent models of third-order dynamical systems. New geometrical aspects of the corresponding transformations together with examples of typical chaotic attractors in the stereoscopic view, give the possibility of a deeper insight into the third-order system dynamics.

[1]  Jifi Kaderka Modelling of third-order elementary canonical state models using cellular neural networks , 1996, Proceedings of Third International Conference on Electronics, Circuits, and Systems.

[2]  Rabinder N Madan,et al.  Chua's Circuit: A Paradigm for Chaos , 1993, Chua's Circuit.

[3]  K. Danek Efficient Use of Mobile Radio Channels II , 2000 .

[4]  M. Hasler,et al.  Communication by chaotic signals : the inverse system approach , 1996 .

[5]  Takashi Matsumoto,et al.  A chaotic attractor from Chua's circuit , 1984 .

[6]  Michael Peter Kennedy,et al.  Three steps to chaos. I. Evolution , 1993 .

[7]  G. Zhong Implementation of Chua's circuit with a cubic nonlinearity , 1994 .

[8]  Jiri Pospisil,et al.  Elementary canonical state models of Chua's circuit family , 1996 .

[9]  Michael Peter Kennedy,et al.  Robust OP Amp Realization of Chua's Circuit , 1992 .

[10]  C. Wu,et al.  A Universal Circuit for Studying and Generating Chaos-Part I: Routes , 1993 .

[11]  Anshan Huang On bounds of the parametric range of bifurcation of Chua's circuit , 1996 .

[12]  Leon O. Chua,et al.  N-Dimensional Canonical Chua's Circuit , 1993, J. Circuits Syst. Comput..

[13]  L. O. Chua,et al.  The double scroll family. I: Rigorous of chaos. II: Rigorous analysis of bifurcation phenomena , 1986 .

[14]  Leon O. Chua,et al.  NEW TYPE OF STRANGE ATTRACTOR FROM A GEOMETRIC MODEL OF CHUA'S CIRCUIT , 1992 .

[15]  A. A. A. Nasser,et al.  Maximum Dynamic Range of bifurcations of Chua's Circuit , 1993, Chua's Circuit.

[16]  M. Hasler Synchronization principles and applications , 1994 .

[17]  Ute Feldmann,et al.  Synthesis of higher dimensional Chua circuits , 1993 .

[18]  JIRI POSPISIL,et al.  New Simple Reference State Model of the Third-Order Piecewise-Linear Dynamical Systems , 2000 .

[19]  Zdeněk Kolka,et al.  Digitally Controlled Linear Four-Port Network , 1994 .

[20]  L. Chua,et al.  A universal circuit for studying and generating chaos. II. Strange attractors , 1993 .

[21]  G. Zhong,et al.  Experimental confirmation of chaos from Chua's circuit , 1985 .

[22]  Leon O. Chua,et al.  A CMOS IC nonlinear resistor for Chua's circuit , 1992 .

[23]  R. Nandi,et al.  A Digitally Programmable Differential Integrator with Enlarged Time Constant , 1994 .

[24]  Michael Peter Kennedy,et al.  Three Steps to Chaos-Part 11: A Chua's Circuit Primer , 1993 .

[25]  L. Chua The Genesis of Chua's circuit , 1992 .

[26]  Leon O. Chua,et al.  Global unfolding of Chua's circuit , 1993 .

[27]  A. A. A. Nasser,et al.  Maximum Dynamic Range of bifurcation of Chua's Circuit , 1993, J. Circuits Syst. Comput..

[28]  L. Chua,et al.  A generalized canonical piecewise-linear representation , 1990 .

[29]  Michael Peter Kennedy,et al.  Three steps to chaos. II. A Chua's circuit primer , 1993 .

[30]  M. Ghausi,et al.  Corrections to 'Synthesis of a Low-sensitivity Multiloop Feedback active RC Filter' , 1974 .

[31]  Teh-Lu Liao,et al.  Control of Chua's circuit with a cubic nonlinearity via nonlinear linearization technique , 1998 .

[32]  P. Arena,et al.  Chua's circuit can be generated by CNN cells , 1995 .

[33]  Josef A. Nossek,et al.  An Autonomous Chaotic Cellular Neural Network and Chua's Circuit , 1993, J. Circuits Syst. Comput..

[34]  Maciej Ogorzalek Chaotic regions from double scroll , 1987 .

[35]  Maciej Ogorzalek,et al.  Taming chaos. I. Synchronization , 1993 .

[36]  František Neuman,et al.  Global Properties of Linear Ordinary Differential Equations , 1992 .

[37]  Ángel Rodríguez-Vázquez,et al.  Design considerations for integrated continuous-time chaotic oscillators , 1998 .

[38]  L. Chua,et al.  Canonical realization of Chua's circuit family , 1990 .

[39]  L. Chua,et al.  A universal circuit for studying and generating chaos. I. Routes to chaos , 1993 .

[40]  Michael Peter Kennedy Three Steps to Chaos-Part I: Evolution , 1993 .

[41]  D. J. Perry,et al.  New multiple feedback active RC network , 1975 .

[42]  Ute Feldmann,et al.  Linear conjugacy of n-dimensional piecewise linear systems , 1994 .

[43]  Maciej J. Ogorzalek,et al.  Taming Chaos: Part 11-Control , 1993 .

[44]  Erik Lindberg Modelling and Simulation of Chua's Circuit , 1993, J. Circuits Syst. Comput..

[45]  C. Wu,et al.  Chua's Equation with Cubic Nonlinearity , 1996 .

[46]  Jiří Pospíšil,et al.  New Canonical State Models of Chua's Circuit Family , 1999 .

[47]  L. Chua,et al.  The double scroll family , 1986 .

[48]  Leon O. Chua,et al.  On linear topological conjugacy of Lur'e systems , 1996 .

[49]  Ladislav Pivka,et al.  Boundary surfaces and Basin bifurcations in Chua's Circuit , 1993, Chua's Circuit.

[50]  Maciej Ogorzalek,et al.  Taming chaos. II. Control , 1993 .

[51]  Ray Brown Generalizations of the Chua equations , 1993 .