A Progressive Approach for Uncertainty Visualization in Diffusion Tensor Imaging

Diffusion Tensor Imaging (DTI) is a non‐invasive magnetic resonance imaging technique that, combined with fiber tracking algorithms, allows the characterization and visualization of white matter structures in the brain. The resulting fiber tracts are used, for example, in tumor surgery to evaluate the potential brain functional damage due to tumor resection. The DTI processing pipeline from image acquisition to the final visualization is rather complex generating undesirable uncertainties in the final results. Most DTI visualization techniques do not provide any information regarding the presence of uncertainty. When planning surgery, a fixed safety margin around the fiber tracts is often used; however, it cannot capture local variability and distribution of the uncertainty, thereby limiting the informed decision‐making process. Stochastic techniques are a possibility to estimate uncertainty for the DTI pipeline. However, it has high computational and memory requirements that make it infeasible in a clinical setting. The delay in the visualization of the results adds hindrance to the workflow. We propose a progressive approach that relies on a combination of wild‐bootstrapping and fiber tracking to be used within the progressive visual analytics paradigm. We present a local bootstrapping strategy, which reduces the computational and memory costs, and provides fiber‐tracking results in a progressive manner. We have also implemented a progressive aggregation technique that computes the distances in the fiber ensemble during progressive bootstrap computations. We present experiments with different scenarios to highlight the benefits of using our progressive visual analytic pipeline in a clinical workflow along with a use case and analysis obtained by discussions with our collaborators.

[1]  Brandon Whitcher,et al.  Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging , 2008, Human brain mapping.

[2]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[3]  Leonidas J. Guibas,et al.  A metric for distributions with applications to image databases , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[4]  Jean-Daniel Fekete,et al.  Progressive Analytics: A Computation Paradigm for Exploratory Data Analysis , 2016, ArXiv.

[5]  H. K. Hahn,et al.  Efficient Visualization of Fiber Tracking Uncertainty based on Complex Gaussian Noise , 2005 .

[6]  John H. Gilmore,et al.  Fiber Tract-Oriented Statistics for Quantitative Diffusion Tensor MRI Analysis , 2005, MICCAI.

[7]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[8]  Carl-Fredrik Westin,et al.  Regularized Stochastic White Matter Tractography Using Diffusion Tensor MRI , 2002, MICCAI.

[9]  Heidrun Schumann,et al.  The Visualization of Uncertain Data: Methods and Problems , 2006, SimVis.

[10]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[11]  Chris R. Johnson,et al.  A Next Step: Visualizing Errors and Uncertainty , 2003, IEEE Computer Graphics and Applications.

[12]  T. Schwartz,et al.  Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. , 2001, Journal of neurosurgery.

[13]  David S. Ebert,et al.  Abstractive Representation and Exploration of Hierarchically Clustered Diffusion Tensor Fiber Tracts , 2008, Comput. Graph. Forum.

[14]  Derek K. Jones Tractography Gone Wild: Probabilistic Fibre Tracking Using the Wild Bootstrap With Diffusion Tensor MRI , 2008, IEEE Transactions on Medical Imaging.

[15]  Jean-Philippe Thiran,et al.  DTI mapping of human brain connectivity: statistical fibre tracking and virtual dissection , 2003, NeuroImage.

[16]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[17]  Cynthia A. Brewer,et al.  ColorBrewer.org: An Online Tool for Selecting Colour Schemes for Maps , 2003 .

[18]  Julien Cohen-Adad,et al.  Quality assessment of high angular resolution diffusion imaging data using bootstrap on Q‐ball reconstruction , 2011, Journal of magnetic resonance imaging : JMRI.

[19]  Mariana Lazar,et al.  Mapping brain anatomical connectivity using white matter tractography , 2010, NMR in biomedicine.

[20]  Karsten Schwan,et al.  An annotated bibliography of interactive program steering , 1994, SIGP.

[21]  David Gotz,et al.  Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics , 2014, IEEE Transactions on Visualization and Computer Graphics.

[22]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[23]  Christopher Nimsky,et al.  Visualization of white matter tracts with wrapped streamlines , 2005, VIS 05. IEEE Visualization, 2005..

[24]  Christopher Nimsky,et al.  Isosurface-Based Generation of Hulls Encompassing Neuronal Pathways , 2009, Stereotactic and Functional Neurosurgery.

[25]  Ross T. Whitaker,et al.  Contour Boxplots: A Method for Characterizing Uncertainty in Feature Sets from Simulation Ensembles , 2013, IEEE Transactions on Visualization and Computer Graphics.

[26]  Alex T. Pang,et al.  Approaches to uncertainty visualization , 1996, The Visual Computer.

[27]  M. Catani Diffusion tensor magnetic resonance imaging tractography in cognitive disorders , 2006, Current opinion in neurology.

[28]  Maria Riveiro,et al.  Evaluation of uncertainty visualization techniques for information fusion , 2007, 2007 10th International Conference on Information Fusion.

[29]  A. Alexander,et al.  White matter tractography using diffusion tensor deflection , 2003, Human brain mapping.

[30]  David G. Norris,et al.  An Investigation of Functional and Anatomical Connectivity Using Magnetic Resonance Imaging , 2002, NeuroImage.

[31]  Regina Y. Liu Bootstrap Procedures under some Non-I.I.D. Models , 1988 .

[32]  A. Romano,et al.  Pre-surgical planning and MR-tractography utility in brain tumour resection , 2009, European Radiology.

[33]  Ross T. Whitaker,et al.  Curve Boxplot: Generalization of Boxplot for Ensembles of Curves , 2014, IEEE Transactions on Visualization and Computer Graphics.

[34]  P. Basser,et al.  Parametric and non-parametric statistical analysis of DT-MRI data. , 2003, Journal of magnetic resonance.

[35]  Ross T. Whitaker,et al.  Adaptive Riemannian Metrics for Improved Geodesic Tracking of White Matter , 2011, IPMI.

[36]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[37]  Y. Assaf,et al.  Diffusion Tensor Imaging (DTI)-based White Matter Mapping in Brain Research: A Review , 2007, Journal of Molecular Neuroscience.

[38]  Atul Narkhede,et al.  Insight from uncertainty: bootstrap-derived diffusion metrics differentially predict memory function among older adults , 2014, Brain Structure and Function.

[39]  Raj Varma Kommaraju,et al.  Metrics for Uncertainty Analysis and Visualization of Diffusion Tensor Images , 2010, MIAR.

[40]  Marc Streit,et al.  Opening the Black Box: Strategies for Increased User Involvement in Existing Algorithm Implementations , 2014, IEEE Transactions on Visualization and Computer Graphics.

[41]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[42]  Bart M. ter Haar Romeny,et al.  Parameter Sensitivity Visualization for DTI Fiber Tracking , 2009, IEEE Transactions on Visualization and Computer Graphics.

[43]  S. Mori,et al.  Principles of Diffusion Tensor Imaging and Its Applications to Basic Neuroscience Research , 2006, Neuron.

[44]  Bart M. ter Haar Romeny,et al.  Illustrative uncertainty visualization of DTI fiber pathways , 2012, The Visual Computer.

[45]  Roland G. Henry,et al.  Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters , 2006, NeuroImage.

[46]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Cheng Guan Koay,et al.  Investigation of anomalous estimates of tensor‐derived quantities in diffusion tensor imaging , 2006, Magnetic resonance in medicine.

[48]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[49]  Marco Catani,et al.  Beyond localization: from hodology to function , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[50]  Steven G. Parker,et al.  A computational steering model applied to problems in medicine , 1994, Proceedings of Supercomputing '94.

[51]  Anna Vilanova,et al.  Illustrative White Matter Fiber Bundles , 2010, Comput. Graph. Forum.

[52]  Thomas Schultz,et al.  Fuzzy Fibers: Uncertainty in dMRI Tractography , 2013, Scientific Visualization.