Effect of putative mitoviruses on in vitro growth of Gremmeniella abietina isolates under different laboratory conditions

Mitoviruses have been found in several forest pathogens (i.e. Cryphonectria parasitica, Gremmeniella abietina), and because they have been shown to reduce the virulence of host fungi there is a growing interest in studying their use as a biocontrol. This study was carried out to test the effect of temperature (5°C, 15°C, 25°C and 35°C), pH (4, 5, 7 and 9) and osmotic potential (–0.6, –1.2, –1.8 and –2.4 MPa) on the mycelial growth of seven G. abietina isolates under controlled laboratory conditions. Four of the isolates hosted mitoviruses and three of them did not. During the experiment, mycelial growth was recorded every week for a period of 8 weeks. Results showed no differences in growth behavior between mitovirus infected and non-infected isolates when placed under different pH modifications. However, the mitovirus-infected isolates presented larger mycelial growth than the mitovirus-free ones when at the fungi’s optimal growing temperature of 15°C. When growing at certain osmotic potentials (–0.6 and –1.8 MPa) a reduction in growth of the mitovirus-infected isolates was observed. The results of this experiment suggest that mycelial growth among non-infected isolates and isolates naturally infected by mitovirus vary under different culture conditions, thus providing further insight into the effects of mitovirus on Gremmeniella abietina isolates.

[1]  J. Hantula,et al.  Occurrence of two different species of mitoviruses in the European race of Gremmeniella abietina var. abietina, both hosted by the genetically unique Spanish population. , 2012, Fungal biology.

[2]  J. Hantula,et al.  Presence of Viral dsRNA molecules in the Spanish population of Gremmeniella abietina , 2012 .

[3]  R. Pérez-Sánchez,et al.  Tick pathogenicity, thermal tolerance and virus infection in Tolypocladium cylindrosporum , 2011 .

[4]  Yin-Won Lee,et al.  Transmission of Fusarium boothii Mycovirus via Protoplast Fusion Causes Hypovirulence in Other Phytopathogenic Fungi , 2011, PloS one.

[5]  A. Pérez-Sierra,et al.  Effect of dsRNA on growth rate and reproductive potential of Monosporascus cannonballus. , 2011, Fungal biology.

[6]  D. Jiāng,et al.  Effect of Mitovirus infection on formation of infection cushions and virulence of Botrytis cinerea. , 2010 .

[7]  K. Korhonen,et al.  A novel putative partitivirus of the saprotrophic fungus Heterobasidion ecrustosum infects pathogenic species of the Heterobasidion annosum complex. , 2010, Fungal biology.

[8]  S. Ghabrial,et al.  Genome characterization of a debilitation-associated mitovirus infecting the phytopathogenic fungus Botrytis cinerea. , 2010, Virology.

[9]  J. Hantula,et al.  Spanish population of Gremmeniella abietina is genetically unique but related to type A in Europe. , 2010, Fungal biology.

[10]  G. E. Zharare,et al.  Effects of temperature and hydrogen peroxide on mycelial growth of eight Pleurotus strains , 2010 .

[11]  C. Robin,et al.  Dominance of natural over released biological control agents of the chestnut blight fungus Cryphonectria parasitica in south-eastern France is associated with fitness-related traits , 2010 .

[12]  Jason E. Stajich,et al.  The Fungi , 2009, Current Biology.

[13]  N. Suzuki,et al.  Viruses of plant pathogenic fungi. , 2009, Annual review of phytopathology.

[14]  T. Teraoka,et al.  A novel mycovirus associated with four double-stranded RNAs affects host fungal growth in Alternaria alternata. , 2009, Virus research.

[15]  R. Beever,et al.  Mycoviruses of filamentous fungi and their relevance to plant pathology. , 2009, Molecular plant pathology.

[16]  J. Marquina,et al.  The interactive effects of temperature and osmotic potential on the growth of marine isolates of Fusarium solani , 2008, Journal of Industrial Microbiology & Biotechnology.

[17]  J. Marquina,et al.  Effects of water potential on spore germination and viability of Fusarium species , 2008, Journal of Industrial Microbiology & Biotechnology.

[18]  D. Jiāng,et al.  Hypovirulence and Double-Stranded RNA in Botrytis cinerea. , 2007, Phytopathology.

[19]  R. Redman,et al.  A Virus in a Fungus in a Plant: Three-Way Symbiosis Required for Thermal Tolerance , 2007, Science.

[20]  R. Hoekstra,et al.  Dynamics of dsRNA mycoviruses in black Aspergillus populations. , 2006, Fungal genetics and biology : FG & B.

[21]  Z. Punja,et al.  Molecular and Biological Characterization of a Mitovirus in Chalara elegans (Thielaviopsis basicola). , 2006, Phytopathology.

[22]  N. Mayek-Pérez,et al.  Potencial Osmótico Variable en el Crecimiento in vitro y laPatogenicidad en Frijol (Phaseolus vulgaris L.) de Fusarium spp , 2006 .

[23]  Lago de Chapala Potencial Osmótico Variable en el Crecimiento in vitro y la Patogenicidad en Frijol (Phaseolus vulgaris L.) de Fusarium spp. , 2006 .

[24]  O. Santamaría,et al.  Genetic characterization of Gremmeniella abietina var. abietina isolates from Spain , 2005 .

[25]  K. Nomura,et al.  Nucleotide sequence of a mitochondrial RNA virus from the plant pathogenic fungus, Helicobasidium mompa Tanaka. , 2005, Virus research.

[26]  J. Pajares,et al.  Physiological and morphological variation of Gremmeniella abietina from Spain , 2004 .

[27]  G. Boland,et al.  A Satellite RNA of Ophiostoma novo-ulmi Mitovirus 3a in Hypovirulent Isolates of Sclerotinia homoeocarpa. , 2004, Phytopathology.

[28]  G. Boland Fungal viruses, hypovirulence, and biological control of Sclerotinia species , 2004 .

[29]  A. Castillo,et al.  A double-stranded RNA mycovirus confers hypovirulence-associated traits to Botrytis cinerea. , 2003, FEMS microbiology letters.

[30]  G. Boland,et al.  Hypovirulence-Associated Double-Stranded RNA from Sclerotinia homoeocarpa Is Conspecific with Ophiostoma novo-ulmi Mitovirus 3a-Ld. , 2003, Phytopathology.

[31]  J. Hantula,et al.  Gremmeniella abietina mitochondrial RNA virus S1 is phylogenetically related to the members of the genus Mitovirus , 2003, Archives of Virology.

[32]  J. Pajares,et al.  First report of Gremmeniella abietina on Pinus halepensis in Spain , 2003 .

[33]  G. S. Martínez,et al.  Influencia del pH en el crecimiento de quince cepas dehongos ectomicorrizógenos , 2002 .

[34]  Yin-Won Lee,et al.  Double-Stranded RNA Mycovirus from Fusarium graminearum , 2002, Applied and Environmental Microbiology.

[35]  D. J. Davis,et al.  Osmotic pressure of fungal compatible osmolytes , 2000 .

[36]  G. Hausner,et al.  Phylogenetic analysis of the small subunit ribosomal RNA gene of the hyphochytrid Rhizidiomyces apophysatus , 2000 .

[37]  P. Pfeiffer,et al.  The influence of dsRNA viruses on the biology of plant pathogenic fungi. , 1999, Trends in microbiology.

[38]  E. P. Benito,et al.  Double-stranded RNA and virus-like particles in the grass endophyte Epichloë festucae , 1998 .

[39]  B. Hillman,et al.  Movement of a small mitochondrial double-stranded RNA element of Cryphonectria parasitica: ascospore inheritance and implications for mitochondrial recombination , 1997, Molecular and General Genetics MGG.

[40]  J. Hantula,et al.  Variation within Gremmeniella abietina in Finland and other countries as determined by Random Amplified Microsatellites (RAMS) , 1997 .

[41]  R. Jalkanen,et al.  In vitro growth of Gremmeniella abietina isolates (European race) at different temperatures , 1996 .

[42]  N. Högberg,et al.  ECOTYPIC VARIATION OF GREMMENIELLA ABIETINA IN NORTHERN EUROPE : DISEASE PATTERNS REFLECTED BY DNA VARIATION , 1995 .

[43]  B. Hillman,et al.  A small mitochondrial double-stranded (ds) RNA element associated with a hypovirulent strain of the chestnut blight fungus and ancestrally related to yeast cytoplasmic T and W dsRNAs. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[44]  V. Kitunen,et al.  Combining sterol and fatty acid profiles for the characterization of fungi , 1994 .

[45]  R. Hamelin,et al.  Identification of Gremmeniella abietina Races with Random Amplified Polymorphic DNA Markers , 1993, Applied and environmental microbiology.

[46]  R. Jalkanen,et al.  Disease history of Gremmeniella abietina in a Pinus sylvestris stand , 1992 .

[47]  H. Rogers,et al.  A mitochondrial target for double-stranded RNA in diseased isolates of the fungus that causes Dutch elm disease , 1987, Nature.

[48]  C. Brasier A cytoplasmically transmitted disease of Ceratocystis ulmi , 1983, Nature.

[49]  A. Uotila Physiological and morphological variation among Finnish Gremmeniella abietina isolates. , 1983 .

[50]  J. M. Duniway,et al.  Effect of temperature and moisture tension on growth, sclerotial production, germination, and infection by Sclerotinia minor. , 1980 .

[51]  C. E. Dorworth Influence of Inoculum Concentration on Infection of Red Pine Seedlings byGremmeniella abietina , 1979 .

[52]  J. Dodds,et al.  Isolation and analysis of double-stranded RNA from virus-infected plant and fungal tissue. , 1979 .

[53]  S. Yokota Scleroderris canker of Todo-fir in Hokkaido, Northern Japan.: III. Dormant infection of the causal fungus , 1975 .

[54]  S. Matsuzaki,et al.  Scleroderris Canker of Todo-Fir in Hokkaido, Northern Japan , 1975 .

[55]  E. Donaubauer,et al.  Distribution and hosts of Scleroderris lagerbergii in Europe and North America , 1972 .

[56]  Kelvin Osmotic Pressure , 1897, Nature.