Applications in Enumerative Combinatorics of Infinite Weighted Automata and Graphs

In this paper we studied infinite weighted automata and a general methodology to solve a wide variety of classical lattice path counting problems in an uniform way. This counting problems are related to Dyck paths, Motzkin paths and some generalizations. These methodology uses weighted automata, equations of ordinary generating functions and continued fractions. It is a variation of the one proposed by J. Rutten.

[1]  Jeffrey Shallit,et al.  A Second Course in Formal Languages and Automata Theory , 2008 .

[2]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[3]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[4]  Keisuke Uchimura Properties of Structure Generating Functions of Automata and their Applications for Linear Systems , 1982, Theor. Comput. Sci..

[5]  Louis W. Shapiro,et al.  A Bijection Between 3-Motzkin Paths and Schroder Paths With No Peak at Odd Height , 2009 .

[6]  Emeric Deutsch,et al.  A bijection between ordered trees and 2-Motzkin paths and its many consequences , 2002, Discret. Math..

[7]  Philippe Flajolet Combinatorial aspects of continued fractions , 1980, Discret. Math..

[8]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[9]  A. Sapounakis,et al.  On k-colored Motzkin words , 2004 .

[10]  Toufik Mansour,et al.  Enumeration of Gap-Bounded Set Partitions , 2009, J. Autom. Lang. Comb..

[11]  Frank R. Bernhart Catalan, Motzkin, and Riordan numbers , 1999, Discret. Math..

[12]  William Y. C. Chen,et al.  Context-Free Grammars, Differential Operators and Formal Power Series , 1993, Theor. Comput. Sci..

[13]  Tony D. Noe On the Divisibility of Generalized Central Trinomial Coefficients , 2022 .

[14]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[15]  T. Mansour Combinatorics of Set Partitions , 2012 .

[16]  Toufik Mansour,et al.  Finite automata and pattern avoidance in words , 2005, J. Comb. Theory, Ser. A.

[17]  William Y. C. Chen,et al.  Identities from weighted Motzkin paths , 2008, Adv. Appl. Math..

[18]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[19]  Jan J. M. M. Rutten Coinductive Counting with Weighted Automata , 2003, J. Autom. Lang. Comb..

[21]  Maylis Delest,et al.  Algebraic Languages: A Bridge between Combinatorics and Computer Science , 1994, Formal Power Series and Algebraic Combinatorics.

[22]  T. Mansour,et al.  Restricted permutations and Chebyshev polynomials. , 2002 .

[23]  Alfred V. Aho,et al.  Compilers: Principles, Techniques, and Tools , 1986, Addison-Wesley series in computer science / World student series edition.

[24]  Elena Barcucci,et al.  ECO method and hill-free generalized Motzkin paths , 2001 .

[25]  Mireille Bousquet-Mélou,et al.  Algebraic Generating Functions in Enumerative Combinatorics and Context-Free Languages , 2005, STACS.

[26]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[27]  Emeric Deutsch,et al.  Skew Dyck paths , 2010 .

[28]  A. Lascoux Symmetric Functions and Combinatorial Operators on Polynomials , 2003 .

[29]  G. Winskel What Is Discrete Mathematics , 2007 .

[30]  T. Mansour,et al.  Combinatorics of Compositions and Words , 2009 .

[31]  Olivier Carton,et al.  Sturmian Trees , 2010, Theory of Computing Systems.