Optical trapping of metallic and core-shell particles in a 1D standing wave

In this contribution we focus on optical forces acting upon a metallic particle or a core-shell particle confined in a standing-wave. The considered spheres are composed either by a gold or silver or the consists of of two layers, one of them is metallic (Au, Ag). We present the results of a computational study where we modify the geometrical parameters of the particles and the wavelength of the trapping beams. Except the optical forces we also deal with heating of the particles. This study may suggest optimal particle composition that may be utilized as an optically trapped probe for Surface enhanced Raman spectroscopy of biomolecules.

[1]  Gérard Gouesbet,et al.  Generalized Lorenz–Mie theory and applications , 2009 .

[2]  Martin Siler,et al.  Optical sorting and detection of submicrometer objects in a motional standing wave , 2006 .

[3]  Pawel Keblinski,et al.  Critical heat flux around strongly heated nanoparticles. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  Frank Scheffold,et al.  Giant enhanced diffusion of gold nanoparticles in optical vortex fields. , 2009, Nano letters.

[5]  Gérard Gréhan,et al.  Generalized Lorenz-Mie Theories , 2011 .

[6]  W. Yang,et al.  Improved recursive algorithm for light scattering by a multilayered sphere. , 2003, Applied optics.

[7]  Mikael Käll,et al.  Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. , 2010, Nano letters.

[8]  Naomi J. Halas,et al.  Linear optical properties of gold nanoshells , 1999 .

[9]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[10]  G. Baffou,et al.  Mapping heat origin in plasmonic structures. , 2010, Physical review letters.

[11]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[12]  Karen Volke-Sepúlveda,et al.  Modulated optical sieve for sorting of polydisperse microparticles , 2006 .

[13]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[14]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[15]  Tomáš Čižmár,et al.  Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination , 2008 .

[16]  Pavel Zemánek,et al.  Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[17]  P. Jain,et al.  Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. , 2006, The journal of physical chemistry. B.

[18]  J. West,et al.  Immunotargeted nanoshells for integrated cancer imaging and therapy. , 2005, Nano letters.

[19]  Romain Quidant,et al.  Nanoscale control of optical heating in complex plasmonic systems. , 2010, ACS nano.

[20]  Anita Jannasch,et al.  Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres , 2012, Nature Photonics.

[21]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[22]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[23]  Romain Quidant,et al.  Surface‐plasmon‐based optical manipulation , 2008 .

[24]  Stephen Arnold,et al.  Radiometric levitation of micron sized spheres , 1982 .

[25]  Pavel Zemánek,et al.  Parametric study of optical forces acting upon nanoparticles in a single, or a standing, evanescent wave , 2011 .

[26]  Pavel Zemánek,et al.  Optical trapping of Rayleigh particles using a Gaussian standing wave , 1998 .

[27]  Pavel Zemánek,et al.  Theoretical comparison of optical traps created by standing wave and single beam , 2003 .

[28]  Hiroshi Masuhara,et al.  Photon pressure-induced association of nanometer-sized polymer chains in solution , 1999 .

[29]  J. P. Barton,et al.  Internal and near‐surface electromagnetic fields for a spherical particle irradiated by a focused laser beam , 1988 .

[30]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[31]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[32]  J. Hotta,et al.  Analysis of radiation pressure exerted on a metallic particle within an evanescent field. , 2000, Optics letters.

[33]  Pavel Zemánek,et al.  Particle jumps between optical traps in a one-dimensional (1D) optical lattice , 2010 .

[34]  Elodie Boisselier,et al.  Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. , 2009, Chemical Society reviews.

[35]  Adam M. Schwartzberg,et al.  Optical trapping and light-induced agglomeration of gold nanoparticle aggregates , 2006 .

[36]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[37]  Petr Ja kl,et al.  Static optical sorting in a laser interference field , 2008 .

[38]  Xiaohua Huang,et al.  Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. , 2008, Accounts of chemical research.

[39]  M. Pinar Mengüç,et al.  Internal absorption cross sections in a stratified sphere. , 1990, Applied optics.

[40]  Gérard Gréhan,et al.  Generalized Lorenz–Mie theories and description of electromagnetic arbitrary shaped beams: Localized approximations and localized beam models, a review , 2011 .

[41]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[42]  Thad G Walker,et al.  Nonlinear motion of optically torqued nanorods. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[43]  Pavel Zemánek,et al.  Optical forces acting on a nanoparticle placed into an interference evanescent field , 2007 .

[44]  Hiroshi Masuhara,et al.  Laser manipulation and fixation of single gold nanoparticles in solution at room temperature , 2002 .

[45]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[46]  Paul V. Ruijgrok,et al.  Brownian fluctuations and heating of an optically aligned gold nanorod. , 2011, Physical review letters.