Computing All or Some Eigenvalues of Symmetric H-Matrices

We use a bisection method [B. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs, NJ, 1980, p. 51] to compute the eigenvalues of a symmetric $\mathcal{H}_{\ell}$-matrix $M$. The number of negative eigenvalues of $M-\mu I$ is computed via the LDL$^T$ factorization of $M-\mu I$. For dense matrices, the LDL$^T$ factorization is too expensive to yield an efficient eigenvalue algorithm in general, but not so for $\mathcal{H}_{\ell}$-matrices. In the special structure of $\mathcal{H}_{\ell}$-matrices there is an LDL$^T$ factorization with linear-polylogarithmic complexity. The bisection method requires only matrix-size independent many iterations to find an eigenvalue up to the desired accuracy, so that an eigenvalue can be found in linear-polylogarithmic time. For all $n$ eigenvalues, $\mathcal{O}(n^{2}(\log n )^{4}\log( \Vert {M}\Vert_{2}/\epsilon_{\text{ev}}))$ flops are needed to compute all eigenvalues with an accuracy $\epsilon_{\text{ev}}$. It is also possible to compute only eigenvalues in a specific interval or the $j$th smallest one. Numerical experiments demonstrate the efficiency of the algorithm, in particular for the case when some interior eigenvalues are required. (A corrected PDF is attached to this article.)

[1]  Michael Lintner Lösung der 2D Wellengleichung mittels hierarchischer Matrizen , 2002 .

[2]  J. Bunch,et al.  Some stable methods for calculating inertia and solving symmetric linear systems , 1977 .

[3]  S. Delvaux,et al.  Transforming a hierarchical matrix into a unitary-weight representation , 2008 .

[4]  Ivan G. Graham,et al.  Inexact inverse iteration for symmetric matrices , 2006 .

[5]  HackbuschW. A sparse matrix arithmetic based on H-matrices. Part I , 1999 .

[6]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[7]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[8]  M. M. Algæ , 2022 .

[9]  Shivkumar Chandrasekaran,et al.  A Hierarchical Semi-separable Moore-Penrose Equation Solver , 2006 .

[10]  M. Barel,et al.  TRANSFORMING A HIERARCHICAL INTO A UNITARY-WEIGHT REPRESENTATION , 2008 .

[11]  Wolfgang Hackbusch,et al.  Construction and Arithmetics of H-Matrices , 2003, Computing.

[12]  Robert A. van de Geijn,et al.  Parallelizing the QR Algorithm for the Unsymmetric Algebraic Eigenvalue Problem: Myths and Reality , 1996, SIAM J. Sci. Comput..

[13]  Mario Bebendorf,et al.  Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value Problems , 2008 .

[14]  Lars Grasedyck,et al.  Theorie und Anwendungen Hierarchischer Matrizen , 2006 .

[15]  Wolfgang Hackbusch,et al.  A Sparse Matrix Arithmetic Based on H-Matrices. Part I: Introduction to H-Matrices , 1999, Computing.

[16]  Shivkumar Chandrasekaran,et al.  A Fast ULV Decomposition Solver for Hierarchically Semiseparable Representations , 2006, SIAM J. Matrix Anal. Appl..

[17]  Raf Vandebril,et al.  An implicit QR algorithm for symmetric semiseparable matrices , 2005, Numer. Linear Algebra Appl..

[18]  Shivkumar Chandrasekaran,et al.  A fast and stable solver for recursively semi-separable systems of linear equations , 2001 .

[19]  S. Chandrasekaran,et al.  A fast adaptive solver for hierarchically semiseparable representations , 2005 .

[20]  R. Vandebril,et al.  Matrix Computations and Semiseparable Matrices , 2007 .