Characterization of the Optimization Process

Recent works in experimental analysis of algorithms have identified the need to explain the observed performance. To understand the behavior of an algorithm it is necessary to characterize and study the factors that affect it. This work provides a summary of the main works related to the characterization of heuristic algorithms, by comparing the works done in understanding how and why algorithms follow certain behavior. The main objective of this research is to promote the improvement of the existing characterization methods and contribute to the development of methodologies for robust analysis of heuristic algorithms performance. In particular, this work studies the characterization of the optimization process of the Bin Packing Problem, exploring existing results from the literature, showing the need for further performance analysis.

[1]  Bernd Freisleben,et al.  Fitness Landscapes, Memetic Algorithms, and Greedy Operators for Graph Bipartitioning , 2000, Evolutionary Computation.

[2]  Kevin Leyton-Brown,et al.  Algorithm runtime prediction: Methods & evaluation , 2012, Artif. Intell..

[3]  Armin Scholl,et al.  Bison: A fast hybrid procedure for exactly solving the one-dimensional bin packing problem , 1997, Comput. Oper. Res..

[4]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[5]  José Torres-Jiménez,et al.  Improving the Performance of Heuristic Algorithms Based on Exploratory Data Analysis , 2013, Recent Advances on Hybrid Intelligent Systems.

[6]  Gerhard Wäscher,et al.  Heuristics for the integer one-dimensional cutting stock problem: A computational study , 1996 .

[7]  Thomas Stützle,et al.  Search Space Features Underlying the Performance of Stochastic Local Search Algorithms for MAX-SAT , 2004, PPSN.

[8]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[9]  D. Thierens,et al.  Predictive measures for problem representation and genetic operator design , 2002 .

[10]  Toby Walsh,et al.  Backbones in Optimization and Approximation , 2001, IJCAI.

[11]  Andreas Fink,et al.  Fitness Landscape Analysis for the Resource Constrained Project Scheduling Problem , 2009, LION.

[12]  Yoav Shoham,et al.  Learning the Empirical Hardness of Optimization Problems: The Case of Combinatorial Auctions , 2002, CP.

[13]  Spiros Mancoridis,et al.  Modeling the Search Landscape of Metaheuristic Software Clustering Algorithms , 2003, GECCO.

[14]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[15]  Graham Kendall,et al.  A Survey And Analysis Of Diversity Measures In Genetic Programming , 2002, GECCO.

[16]  Krzysztof Fleszar,et al.  Average-weight-controlled bin-oriented heuristics for the one-dimensional bin-packing problem , 2011, Eur. J. Oper. Res..

[17]  Sébastien Vérel,et al.  On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives , 2013, Eur. J. Oper. Res..

[18]  Jürgen Schmidhuber,et al.  Learning dynamic algorithm portfolios , 2006, Annals of Mathematics and Artificial Intelligence.

[19]  John E. Beasley,et al.  OR-Library: Distributing Test Problems by Electronic Mail , 1990 .

[20]  Carles Mateu Piñol CSP problems as algorithmic benchmarks: measures, methods and models , 2009 .

[21]  Kevin R.G. Smyth,et al.  Understanding stochastic local search algorithms : an empirical analysis of the relationship between search space structure and algorithm behaviour , 2004 .

[22]  Martin J. Oates,et al.  Landscape State Machines: Tools for Evolutionary Algorithm Performance Analyses and Landscape/Algorithm Mapping , 2003, EvoWorkshops.

[23]  Patrick De Causmaecker,et al.  Towards prediction of algorithm performance in real world optimisation problems , 2009 .

[24]  Mauro Birattari,et al.  Tuning Metaheuristics - A Machine Learning Perspective , 2009, Studies in Computational Intelligence.

[25]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[26]  Stephan Mertens The Easiest Hard Problem: Number Partitioning , 2006, Computational Complexity and Statistical Physics.

[27]  Steven Halim,et al.  An Integrated White+Black Box Approach for Designing and Tuning Stochastic Local Search , 2007, CP.

[28]  Joaquín Pérez Ortega,et al.  A Statistical Approach for Algorithm Selection , 2004, WEA.

[29]  Gerhard Wäscher,et al.  The bin-packing problem: A problem generator and some numerical experiments with FFD packing and MTP , 1997 .

[30]  Johannes Schneider,et al.  Searching for Backbones--a high-performance parallel algorithm for solving combinatorial optimization problems , 2003, Future Gener. Comput. Syst..

[31]  Assaf Naor,et al.  Rigorous location of phase transitions in hard optimization problems , 2005, Nature.

[32]  Bruce L. Golden,et al.  Solving the one-dimensional bin packing problem with a weight annealing heuristic , 2008, Computers & Operations Research.

[33]  Ellips Masehian,et al.  Efficient and Robust Parameter Tuning for Heuristic Algorithms , 2013 .

[34]  Alexander K. Hartmann,et al.  Phase transition for cutting-plane approach to vertex-cover problem , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  Peter Merz,et al.  Advanced Fitness Landscape Analysis and the Performance of Memetic Algorithms , 2004, Evolutionary Computation.

[36]  Bernd Freisleben,et al.  Fitness landscape analysis and memetic algorithms for the quadratic assignment problem , 2000, IEEE Trans. Evol. Comput..

[37]  Weixiong Zhang,et al.  Configuration landscape analysis and backbone guided local search: Part I: Satisfiability and maximum satisfiability , 2004, Artif. Intell..

[38]  Enn Tyugu,et al.  Constraint Programming , 1994, NATO ASI Series.

[39]  Thomas Stützle,et al.  Classification of Metaheuristics and Design of Experiments for the Analysis of Components , 2001 .

[40]  José Torres-Jiménez,et al.  Heurísticas de agrupación híbridas eficientes para el problema , 2012, Computación y Sistemas.

[41]  Hussein A. Abbass Anti-correlation Measures in Genetic Programming , 2001 .

[42]  Christian Borgs,et al.  Phase transition and finite‐size scaling for the integer partitioning problem , 2001, Random Struct. Algorithms.

[43]  Thomas Stützle,et al.  New Benchmark Instances for the QAP and the Experimental Analysis of Algorithms , 2004, EvoCOP.

[44]  Kate Smith-Miles,et al.  Measuring instance difficulty for combinatorial optimization problems , 2012, Comput. Oper. Res..

[45]  Fred W. Glover,et al.  A Hybrid Improvement Heuristic for the One-Dimensional Bin Packing Problem , 2004, J. Heuristics.

[46]  José Torres-Jiménez,et al.  Phase Transition in the Bandwidth Minimization Problem , 2009, MICAI.

[47]  David S. Johnson,et al.  Fast Algorithms for Bin Packing , 1974, J. Comput. Syst. Sci..

[48]  Yoav Shoham,et al.  Understanding Random SAT: Beyond the Clauses-to-Variables Ratio , 2004, CP.

[49]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[50]  L. Darrell Whitley,et al.  Problem difficulty for tabu search in job-shop scheduling , 2003, Artif. Intell..

[51]  Kevin Leyton-Brown,et al.  Performance Prediction and Automated Tuning of Randomized and Parametric Algorithms , 2006, CP.

[52]  Mike Preuss,et al.  Experiments on metaheuristics: Methodological overview and open issues , 2007 .

[53]  Ross J. W. James,et al.  A Knowledge Discovery Approach to Understanding Relationships between Scheduling Problem Structure and Heuristic Performance , 2009, LION.

[54]  Guoqiang Zeng,et al.  Survey on computational complexity with phase transitions and extremal optimization , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[55]  Edmund K. Burke,et al.  Analyzing the landscape of a graph based hyper-heuristic for timetabling problems , 2009, GECCO.

[56]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[57]  Riccardo Poli,et al.  Information landscapes , 2005, GECCO '05.

[58]  Alan Smaill,et al.  Backbone Fragility and the Local Search Cost Peak , 2000, J. Artif. Intell. Res..

[59]  Verónica Pérez-Rosas,et al.  Enhancing Accuracy of Hybrid Packing Systems through General-Purpose Characterization , 2011, HAIS.