Estimating Large Correlation Matrices for International Migration.

The United Nations is the major organization producing and regularly updating probabilistic population projections for all countries. International migration is a critical component of such projections, and between-country correlations are important for forecasts of regional aggregates. However, in the data we consider there are 200 countries and only 12 data points, each one corresponding to a five-year time period. Thus a 200 × 200 correlation matrix must be estimated on the basis of 12 data points. Using Pearson correlations produces many spurious correlations. We propose a maximum a posteriori estimator for the correlation matrix with an interpretable informative prior distribution. The prior serves to regularize the correlation matrix, shrinking a priori untrustworthy elements towards zero. Our estimated correlation structure improves projections of net migration for regional aggregates, producing narrower projections of migration for Africa as a whole and wider projections for Europe. A simulation study confirms that our estimator outperforms both the Pearson correlation matrix and a simple shrinkage estimator when estimating a sparse correlation matrix.

[1]  Runze Li,et al.  Analysis of Longitudinal Data With Semiparametric Estimation of Covariance Function , 2007, Journal of the American Statistical Association.

[2]  L. Sjaastad The Costs and Returns of Human Migration , 1962 .

[3]  J. Crush Fortress South Africa and the deconstruction of apartheid's migration regime. , 1999, Geoforum; journal of physical, human, and regional geosciences.

[4]  J. Bijak,et al.  Population and labour force projections for 27 European countries, 2002-052: impact of international migration on population ageing , 2007, European journal of population = Revue europeenne de demographie.

[5]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[6]  Guy J. Abel,et al.  Estimating Global Migration Flow Tables Using Place of Birth Data , 2013, Institut für Demographie - VID.

[7]  Noureddine El Karoui,et al.  Operator norm consistent estimation of large-dimensional sparse covariance matrices , 2008, 0901.3220.

[8]  Michael Wolf,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011 .

[9]  Olivier Ledoit,et al.  Nonlinear Shrinkage Estimation of Large-Dimensional Covariance Matrices , 2011, 1207.5322.

[10]  Jianqing Fan,et al.  Large covariance estimation by thresholding principal orthogonal complements , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[11]  G. C. Wei,et al.  A Monte Carlo Implementation of the EM Algorithm and the Poor Man's Data Augmentation Algorithms , 1990 .

[12]  P. Bickel,et al.  Regularized estimation of large covariance matrices , 2008, 0803.1909.

[13]  C. Delbruck,et al.  [The theory of migration]. , 1993, Jahrbucher fur Nationalokonomie und Statistik.

[14]  John R. Harris,et al.  Migration, Unemployment & Development: A Two-Sector Analysis , 1970 .

[15]  Merrill W. Liechty,et al.  Bayesian correlation estimation , 2004 .

[16]  M. Wand,et al.  Simple Marginally Noninformative Prior Distributions for Covariance Matrices , 2013 .

[17]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[18]  H. Hersbach Decomposition of the Continuous Ranked Probability Score for Ensemble Prediction Systems , 2000 .

[19]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[20]  Jianhua Z. Huang,et al.  Covariance matrix selection and estimation via penalised normal likelihood , 2006 .

[21]  M. Todaro,et al.  Migration, Unemployment and Developmnent: A Two-Sector Analysis , 2007 .

[22]  A. U.S.,et al.  Sparse Estimation of a Covariance Matrix , 2010 .

[23]  Han Liu,et al.  Challenges of Big Data Analysis. , 2013, National science review.

[24]  Jakub Bijak,et al.  Bayesian Population Forecasting: Extending the Lee-Carter Method , 2015, Demography.

[25]  W. Wu,et al.  Covariance and precision matrix estimation for high-dimensional time series , 2013, 1401.0993.

[26]  David E. Bloom,et al.  The new economics of labor migration , 1985 .

[27]  M. Okólski Regional dimension of international migration in Central and Eastern Europe. , 1998, Genus.

[28]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[29]  Clifford S. Stein Estimation of a covariance matrix , 1975 .

[30]  H. Zou,et al.  Sparse precision matrix estimation via lasso penalized D-trace loss , 2014 .

[31]  Tom Leonard,et al.  Bayesian Inference for a Covariance Matrix , 1992 .

[32]  Jakub Bijak,et al.  Integrated Modeling of European Migration , 2013 .

[33]  Matt Simpson,et al.  Bayesian inference for a covariance matrix , 2014, 1408.4050.

[34]  T. Mayer,et al.  Notes on CEPII’s Distances Measures: The GeoDist Database , 2011 .

[35]  H. Fassmann,et al.  European East-West Migration, 1945–1992 , 1994, The International migration review.

[36]  Jakub Bijak,et al.  Bayesian forecasting of immigration to selected European countries by using expert knowledge , 2010 .

[37]  T. Richardson,et al.  Estimation of a covariance matrix with zeros , 2005, math/0508268.

[38]  Adam J. Rothman,et al.  Sparse estimation of large covariance matrices via a nested Lasso penalty , 2008, 0803.3872.

[39]  Lie Wang,et al.  Sparse Covariance Matrix Estimation With Eigenvalue Constraints , 2014, Journal of computational and graphical statistics : a joint publication of American Statistical Association, Institute of Mathematical Statistics, Interface Foundation of North America.

[40]  Jonathan J. Azose,et al.  Probabilistic population projections with migration uncertainty , 2016, Proceedings of the National Academy of Sciences.

[41]  M. Pourahmadi Covariance Estimation: The GLM and Regularization Perspectives , 2011, 1202.1661.

[42]  L. Tierney,et al.  Accurate Approximations for Posterior Moments and Marginal Densities , 1986 .

[43]  A. Raftery,et al.  Regional Probabilistic Fertility Forecasting by Modeling Between-Country Correlations. , 2012, Demographic research.

[44]  Jianqing Fan,et al.  Regularization of Wavelet Approximations , 2001 .

[45]  Eiko R. Thielemann The future of the common European asylum system: in need of a more comprehensive burden-sharing approach , 2008 .

[46]  Olivier Ledoit,et al.  A well-conditioned estimator for large-dimensional covariance matrices , 2004 .

[47]  Olivier Ledoit,et al.  Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .

[48]  ANTHONY WREN,et al.  Population Growth , 1972, Nature.

[49]  Ying Cui,et al.  Sparse estimation of high-dimensional correlation matrices , 2016, Comput. Stat. Data Anal..

[50]  Eric C. Chi,et al.  Stable Estimation of a Covariance Matrix Guided by Nuclear Norm Penalties , 2013, Comput. Stat. Data Anal..

[51]  Elisabeth Johansson-Nogués,et al.  The EU as a Modest 'Force for Good': the European Neighbourhood Policy , 2008 .

[52]  O. Korn,et al.  Forward-Looking Measures of Higher-Order Dependencies with an Application to Portfolio Selection , 2015 .

[53]  James Raymer,et al.  Putting the Pieces of the Puzzle Together: Age and Sex-Specific Estimates of Migration amongst Countries in the EU/EFTA, 2002–2007 , 2011 .

[54]  Xinwei Deng,et al.  Penalized Covariance Matrix Estimation Using a Matrix-Logarithm Transformation , 2013 .

[55]  E. Lee A theory of migration , 1966, Demography.

[56]  Jianqing Fan,et al.  An Overview of the Estimation of Large Covariance and Precision Matrices , 2015, The Econometrics Journal.

[57]  Emma Wright 2008-based national population projections for the United Kingdom and constituent countries , 2010, Population trends.

[58]  J. de Beer,et al.  Overcoming the Problems of Inconsistent International Migration data: A New Method Applied to Flows in Europe , 2010, European journal of population = Revue europeenne de demographie.

[59]  C. Stein,et al.  Estimation with Quadratic Loss , 1992 .

[60]  Xiao-Li Meng,et al.  Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage , 2000 .

[61]  Adrian E. Raftery,et al.  Bayesian Probabilistic Projection of International Migration , 2013, Demography.

[62]  P. Bickel,et al.  Covariance regularization by thresholding , 2009, 0901.3079.

[63]  R. Tibshirani,et al.  Sparse estimation of a covariance matrix. , 2011, Biometrika.

[64]  T. Bengtsson,et al.  Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants , 2007 .

[65]  A. Rogers Requiem for the net migrant. , 2010 .