Studying Microarray Gene Expression Data of Schizophrenic Patients for Derivation of a Diagnostic Signature through the Aid of Machine Learning

Schizophrenia is a complex psychiatric disease that is affected by multiple genes, some of which could be used as biomarkers for specific diagnosis of the disease. In this work, we explore the powe ...

[1]  B. Baune,et al.  Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: A systematic review of biomarker studies , 2014, Neuroscience & Biobehavioral Reviews.

[2]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[4]  Andrew P. Bradley,et al.  The use of the area under the ROC curve in the evaluation of machine learning algorithms , 1997, Pattern Recognit..

[5]  Christopher H Woelk,et al.  A combined analysis of microarray gene expression studies of the human prefrontal cortex identifies genes implicated in schizophrenia. , 2012, Journal of psychiatric research.

[6]  Brian Dean,et al.  Gene Expression Profiling in Brodmann's Area 46 from Subjects with Schizophrenia , 2007, The Australian and New Zealand journal of psychiatry.

[7]  Cheng-Yan Kao,et al.  Analysis of schizophrenia and hepatocellular carcinoma genetic network with corresponding modularity and pathways: novel insights to the immune system , 2013, BMC Genomics.

[8]  Toshiyuki Someya,et al.  Diagnostic classification of schizophrenia by neural network analysis of blood-based gene expression signatures , 2010, Schizophrenia Research.

[9]  M. Lidow,et al.  Calcium signaling dysfunction in schizophrenia: a unifying approach , 2003, Brain Research Reviews.

[10]  Carter Bancroft,et al.  Utilization of Never-Medicated Bipolar Disorder Patients towards Development and Validation of a Peripheral Biomarker Profile , 2013, PloS one.

[11]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[12]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[13]  Tianzi Jiang,et al.  A combinational feature selection and ensemble neural network method for classification of gene expression data , 2004, BMC Bioinformatics.

[14]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[15]  S. Drăghici,et al.  Analysis of microarray experiments of gene expression profiling. , 2006, American journal of obstetrics and gynecology.

[16]  Jan Struyf,et al.  Combining gene expression, demographic and clinical data in modeling disease: a case study of bipolar disorder and schizophrenia , 2008, BMC Genomics.

[17]  Wolfram Burgard,et al.  Supervised Learning of Places from Range Data using AdaBoost , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[18]  Bing Liu,et al.  Gene expression analysis reveals schizophrenia-associated dysregulation of immune pathways in peripheral blood mononuclear cells , 2012, Journal of Psychiatric Research.

[19]  Jason Weston,et al.  Gene Selection for Cancer Classification using Support Vector Machines , 2002, Machine Learning.

[20]  Peter D'Eustachio,et al.  Reactome knowledgebase of human biological pathways and processes. , 2011, Methods in molecular biology.

[21]  Aristotelis A. Chatziioannou,et al.  Making sense of the biological complexity through the platform-driven unification of the analytical and visualization tasks , 2015, 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (BIBE).

[22]  S. Rapoport,et al.  RETRACTED: Increased neuroinflammatory and arachidonic acid cascade markers, and reduced synaptic proteins, in the postmortem frontal cortex from schizophrenia patients , 2013, Schizophrenia Research.

[23]  Richard Weber,et al.  A wrapper method for feature selection using Support Vector Machines , 2009, Inf. Sci..

[24]  Xiaohui Lin,et al.  A support vector machine-recursive feature elimination feature selection method based on artificial contrast variables and mutual information. , 2012, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[25]  Rafael A Irizarry,et al.  Exploration, normalization, and summaries of high density oligonucleotide array probe level data. , 2003, Biostatistics.

[26]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[27]  Zhongming Zhao,et al.  RNA-Seq analysis implicates dysregulation of the immune system in schizophrenia , 2012, BMC Genomics.

[28]  Sotiris B. Kotsiantis,et al.  Supervised Machine Learning: A Review of Classification Techniques , 2007, Informatica.

[29]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[30]  M. Bortolomasi,et al.  Altered Gene Expression in Schizophrenia: Findings from Transcriptional Signatures in Fibroblasts and Blood , 2015, PloS one.

[31]  J. Campisi,et al.  Persistent DNA damage signaling triggers senescence-associated inflammatory cytokine secretion , 2009, Nature Cell Biology.

[32]  Michael J. Berridge,et al.  Calcium signalling and psychiatric disease: bipolar disorder and schizophrenia , 2014, Cell and Tissue Research.

[33]  Kilian Q. Weinberger,et al.  Distance Metric Learning for Large Margin Nearest Neighbor Classification , 2005, NIPS.

[34]  K. Hajian‐Tilaki,et al.  Receiver Operating Characteristic (ROC) Curve Analysis for Medical Diagnostic Test Evaluation. , 2013, Caspian journal of internal medicine.

[35]  K. Iwamoto,et al.  Gene Expression Profiling in Schizophrenia and Related Mental Disorders , 2006, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[36]  Pedro Larrañaga,et al.  A review of feature selection techniques in bioinformatics , 2007, Bioinform..

[37]  J. Pierri,et al.  Gene Expression Profiling Reveals Alterations of Specific Metabolic Pathways in Schizophrenia , 2002, The Journal of Neuroscience.

[38]  Janan T. Eppig,et al.  The Mammalian Phenotype Ontology as a unifying standard for experimental and high-throughput phenotyping data , 2012, Mammalian Genome.

[39]  F. Gaughran,et al.  Schizophrenia as segmental progeria , 2011, Journal of the Royal Society of Medicine.

[40]  Károly Mirnics,et al.  ynaptic changes in the brain of subjects with schizophrenia , 2011 .

[41]  Jack Y. Yang,et al.  A comparative study of different machine learning methods on microarray gene expression data , 2008, BMC Genomics.

[42]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[43]  Peter N. Robinson,et al.  The Human Phenotype Ontology: Semantic Unification of Common and Rare Disease , 2015, American journal of human genetics.

[44]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[45]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[46]  S. Srivastava,et al.  Penfluridol: An Antipsychotic Agent Suppresses Metastatic Tumor Growth in Triple-Negative Breast Cancer by Inhibiting Integrin Signaling Axis. , 2016, Cancer research.

[47]  Qingzhong Wang,et al.  Association study of VEGFA polymorphisms with schizophrenia in Han Chinese population , 2015, Neuroscience Letters.

[48]  Musa H. Asyali,et al.  Gene Expression Profile Classification: A Review , 2006 .

[49]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[50]  Tanya Barrett,et al.  The Gene Expression Omnibus Database , 2016, Statistical Genomics.